CMR : Mọi n ∈Z thì (n+14)(n+3) +22 không chia hết cho 121
CMR : Mọi n \(\in Z\) thì an = n2 + 9n + 12 không chia hết cho 121
CMR với mọi số nguyên n thì n4+5x2+9 không chia hết cho 121
Thống nhất biểu thức là $A=n^4+5n^2+9$ bạn nhé, không phải $x$.
Lời giải:
Giả sử $n^4+5n^2+9\vdots 121$
$\Rightarrow n^4+5n^2+9\vdots 11$
$\Rightarrow n^4+5n^2-11n^2+9\vdots 11$
$\Rightarrow n^4-6n^2+9\vdots 11$
$\Rightarrow (n^2-3)^2\vdots 11$
$\Rightarrow n^2-3\vdots 11$
Đặt $n^2-3=11k$ với $k$ nguyên
Khi đó: $n^4+5n^2+9=(11k+3)^2+5(11k+3)+9=121k^2+121k+33\not\vdots 121$ (trái với giả sử)
Vậy giả sử là sai. Tức là với mọi số nguyên $n$ thì $n^4+5n^2+9$ không chia hết cho $121$
CMR :a,5n-1 chia hết cho 4
b,n2+n+2 không chia hết cho 5
c,n2+5n+2 không chia hết cho 121
d,n2+n-14 không chia hết cho 9
CMR với mọi n thuộc Z thì:
a. (n-1)*(n+2)+12 không chia hết cho 9
b. (n+2)*(n+9)+21 không chia hết ch 49
1 CMR
a) (n+20152016)+(n+20152016) chia hết cho 2 với mọi n thuộc N
b) n2+5n+7 không chia hết cho 2 với mọi n thuộc N
c)n(n+1)+1 không chia hết cho 5 với mọi n thuộc N
d)n2+n+2 không chia hết cho 15 với mọi n thuộc N
e)n2+n+2 không chia hết cho 3 với mọi n thuộc N
f)n2+n+1 không chia hết cho 5 với mọi n thuộc N
2 CMR
a)n2+11n+39 không chia hết cho 49 với mioj n thuộc N
b)n2-n+10 không chia hết cho 169 với mọi n thuộc N
c)n2+3n+5 không chia hết cho 121 với mọi n thuộc N
d)4n2+8n-6 không chia hết cho 25 với mọi n thuộc N
e)n2-5n-49 không chia hết cho 169 với mọi n thuộc N
CMR : Với mọi \(n\in Z\)thì \(n^2+n+2\)không chia hết cho 3
TH1 : Nếu n = 3k (k thuộc Z)
Suy ra n* 2 + n + 2= 3k*2 + 3k + 2 không chia hết cho 3
TH2 : Nếu n = 3k + 1 (k thuộc Z)
Suy ra n* 2 + n + 2 = (3k + 1)*2 + 3k + 1 + 2
= ( 3k + 1) . (3k + 1) + 3k + 1 + 2
= 3k (3k + 1) + 3k + 1 + 3k + 1 + 2
= 9k*2 + 3k + 3k + 1 + 3k + 1 + 2
= 9k*2 + 9k + 4 không chia hết cho 3
TH2 : Nếu n = 3k + 2 (k thuộc Z)
Suy ra n*2 + n + 2 = (3k + 2)*2 + 3k + 2 + 2
= (3k + 2) . (3k + 2) + 3k + 2 + 2
= 3k(3k + 2) + 2 (3k + 2) + 3k + 2 + 2
= 9k*2 + 6k + 6k + 4 + 3k + 2 + 2
= 9k*2 + 15k + 8 không chia hết cho 3
Vậy ........................................................
Mk nhanh nhất k mk nha
chứng minh rằng ( n + 14)(n + 3) +22 không chia hết cho 121 vs mọi số nguyên n
xét 2 th
th1)\(n⋮11\)
\(=>\left(n+14\right)\left(n+3\right)không⋮11=>\left(n+14\right)\left(n+3\right)+22không⋮11=>không⋮121.\)
th2)\(nkhông⋮11\)
\(\left(n+14\right)\left(n+3\right)+22=n^2+17n+42+22=\left(n^2+6n+9\right)+11n+55=\left(n+3\right)^2+11n+5.\)
nếu \(\left(n+3\right)⋮11=>\left(n+3\right)^2⋮121\)
khi đó n chia 11 dư 8=>11n+55 chia 121 dư 22 =>đpcm
nếu \(\left(n+3\right)^2không⋮11=>đpcm\)
cmr vơi mọi n thuộc z thì
1,B=n^3-7n+19 không chia hết cho 6
2, Tổng bình phương của 2 số lẻ không chia hết cho 4
3,hiệu bình phương của hai số lẻ chia hết cho 8
4, n(n+2)(25n^2-1) chia hết cho 24
Câu 2
Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2
Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1
=4(K^2+K+H^2+H)+2
Vì 4(K^2+K+H^2+H) chia hết cho 4
=>4(K^2+K+H^2+H)+2 ko chia hết cho 4
Mk biết làm vậy thôi nha