cho biểu thức \(A=2+2^2+2^3+2^4+...+2^{2014}+2^{2015}+2^{2016}\)
chứng minh rằng A chia hết cho 7
Cho biểu thức A = 2 + 2^2 + 2^3 + 2^4 +2^5 + 2^6 + ...+ 2^2014 + 2^2015 +2^2016
Chứng minh rằng A chia hết cho 7.
Làm được có thể là God
A = 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + ..... + 2^2014 + 2^2015 + 2^2016
A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + .... + ( 2^2014 + 2^2015 + 2^2016 )
A = 2 ( 1 + 2 + 2^2 ) + 2^4 ( 1 + 2 + 2^2 ) + .... + 2^2014 ( 1 + 2 + 2^2 )
A = 2 . 7 + 2^4 . 7 + ..... + 2^2016 . 7
A = 7 ( 2 + 2^4 + .... + 2^2016 )
vì 7 chia hết cho 7 => 7 ( 2 + 2^4 + ..... + 2^2014 ) chia hết cho 7
=> A chia hết cho 7
chúc bạn học giỏi n_n
Ta có:
A = 2(1+2+2^2) + 2^3(1+2+2^2)+.....+2^2014(1+2+2^2)
= 2.7 + 2^3. 7 + ..... + 2^2014 . 7
= 7(2+2^3+....+2^2014) \(⋮7\)
Vậy A chia hết cho 7
bạn cứ gộp bộ 3 số lại và rút ra
ví dụ nha: 2+2^2+2^3=2(1+2+2^2)=2(1+2+4)=2*7 chia hết cho 7
tương tự s các bộ số sau
Cho biểu thức A=(2015^2016 - 1).(2015^2016 +1 )
1.Chứng minh rằng A chia hết cho 4
2.Chứng minh rằng A chia hết cho 12
cho biểu thức A=2+22+23+24+25+...+22014+22015+22016
chứng minh rằng Achia hết cho 7
A = (2+22+23+24)+...+(22013+22014+22015+22016)
A=2 x (1+2+22)+...+22013 x (1+2+22)
A=2 x 7 +...+ 22013 x 7
A=7 x (2+...+22013)
vì 7chia hết cho 7 nên 7 x (2+...+22013)
vậy A chia hết cho 7
dạng 7*k=A=<2+22+23>+...
A=14+<..>+...
A=7*2+...
BAI 1 ;CHO BIEU THUC A=1+2+2^2+2^3+...+2^101+2^102
a) chứng minh rằng A chia hết cho 3;7 và chia hết cho 21
b) tìm chữ số tận cùng của tổng trên
BÀI 2; CHO BIEU THUC B = 1+7+7^2+...+7^2014+7^2015
a) chứng minh rằng B chia hết cho 57
b) biểu thức B chia cho 7 dư bao nhiêu
c) tìm số dư khi chia B cho 49
BÀI 3;CHO BIỂU THỨC A= 1+3+3^2+3^3+...+3^x
a) rút gọn biểu thức A
b) tìm x để bieu thức A= 3280
c) với x=17. chứng minh rằng A chia hết cho 4
đ) với x = 2017. tìm số dư cho phép chia A cho 9
Cho biểu thức A=\(\left(2015^{2016}-1\right)\left(2015^{2016}+1\right)\)
1.Chứng minh rằng A chia hết cho 4
2.Chứng minh rằng A chia hết cho 12
gips mk với ai làm nhanh nhất mk sẽ k
Chứng minh rằng 1 . 3 . 5. ... . 2013 . 2015 + 2 . 4 . 6 . ... . 2014 . 2016 chia hết cho 9911
Ta có 9911 = 11 . 17 . 53 . Trong mỗi tích đều có các thừa số đó :
- Tích các số lẻ có chứa các số 11 ; 17 ; 53
- Tích các số chẵn có các số 22 ; 34 ; 106 lần lượt là bội của các số 11 ; 17 ; 53
=> Tổng hai tích chia hết cho 9911.
CHO A=4+2^2+2^3+2^4+.....+2^2015+2^2016
Chứng minh rằng A chia hết cho 2^2017
Ta có \(A=4+2^2+2^3+...+2^{2016}\)
\(A=2^2+2^2+2^3+...+2^{2016}\)
Ta có \(2^2+2^2=2^2.2=2^3\)
\(2^3+2^3=2^3.2=2^4\)
..........................................
Tương tự với các số hạng còn lại ta được
\(A=4+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}+2^{2016}=2^{2016}.2=2^{2017}\)chia hết cho \(2^{2017}\)
Vậy A chia hết cho \(2^{2017}\)
cho A=(-1)+2+(-3)+4+(-5)+6+.........+2014+(-2015)+2016.
chứng minh a chia hết cho 3
Ta có A = [ (- 1) + 2 ] + [ (- 2) + 3 ) ] + [ (-3) + 4 ] + ..... + [ (- 2015) + 2016 ]
= 1 + 1 + 1 + ..... + 1 ( có [ ( 2016 - 1 ) + 1 ] : 2 = 1008 chữ số 1 )
= 1x1008 = 1008
Vì 1008 chia hết cho 3 => A chia hết cho 3 ( điều phải chứng minh )
Chứng minh rằng :A=1+3+3^2+3^3+3^4+.....+3^2015 chia hết cho 5
B= 2+2^2+2^3+...+2^2016 chia hết cho 15
\(A=1+3+3^2+3^3+3^4+...+3^{2015}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{2012}\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{2012}\right)\)
\(=40\left(1+3^4+...+3^{2012}\right)\)\(⋮\)\(5\)
\(B=2+2^2+2^3+...+2^{2016}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{2013}+2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+..+2^{2013}\left(1+2+2^2+2^3\right)\)
\(=\left(1+2+2^2+2^3\right)\left(2+2^5+...+2^{2013}\right)\)
\(=15\left(2+2^5+...+2^{2013}\right)\)\(⋮\)\(15\)