Cho biểu thức:
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right):\frac{x+2006}{x}\)
Các bạn giúp mình gấp với !!!!! Chiều mình phải nộp bài rồi !!!
Cho biểu thức
M = \(\left(\frac{1+x}{1-x}-\frac{1-x}{1+x}-\frac{4x^2}{x^2-1}\right):\frac{4\left(x^2-3\right)}{x\left(1-x\right)}\)
Giúp mình nha ms sửa lại câu hỏi nhờ các bạn giỏi giúp
\(M=\left(\frac{1+x}{1-x}-\frac{1-x}{1+x}-\frac{4x^2}{x^2-1}\right):\frac{4\left(x^2-3\right)}{x\left(1-x\right)}\)
\(=\left(\frac{1+x}{1-x}-\frac{1-x}{1+x}+\frac{4x^2}{1-x^2}\right).\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\left(\frac{\left(1+x\right)^2}{\left(1-x\right)\left(1+x\right)}-\frac{\left(1-x\right)^2}{\left(1+x\right)\left(1-x\right)}+\frac{4x^2}{\left(1+x\right)\left(1-x\right)}\right).\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\left(\frac{\left(1+x\right)^2-\left(1-x\right)^2+4x^2}{\left(1-x\right)\left(1+x\right)}\right).\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\frac{\left(1+x+1-x\right)\left(1+x-1+x\right)+4x^2}{\left(1-x\right)\left(1+x\right)}.\frac{x\left(1-x\right)}{4\left(x^3-3\right)}\)
\(=\frac{2.2x+4x^2}{\left(1+x\right)}.\frac{x}{4\left(x^3-3\right)}\)
\(=\frac{4x+4x^2}{\left(1+x\right)}.\frac{x}{4\left(x^3-3\right)}\)
\(=\frac{4x\left(1+x\right)}{\left(1+x\right)}.\frac{x}{4\left(x^3-3\right)}\)
\(=\frac{x}{1}.\frac{x}{\left(x^3-3\right)}\)
\(=\frac{x^2}{x^3-3}\)
1/ Cho biểu thức \(A=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)
Tính giá trị của A khi x=36
2/ rút gọn biểu thức \(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\left(x\ge0,x\ne16\right)\)
3/ Với các biểu thức A và B nói trên, hãy tìm các giá trị của x nguyên để giá trị của biểu thức B(A-1) là số nguyên
GIÚP MÌNH VỚI!!!!!! MAI MÌNH NỘP BÀI RỒI!!!!!!!!!!1
1.Tính:
\(x:\frac{x-1}{2}-\frac{\left(x-1\right)\left(x^2+4x+1\right)}{2x^2+2x}.\frac{-4x}{\left(x-1\right)^2}-\frac{4x^2}{x^2-1}\)
2.Chứng minh đẳng thức sau( giả sử đẳng thức có nghĩa):
\(\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}+\frac{x-y}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)
Các bạn giúp mình với!
Cho biểu thức Q =\(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
Rút gọn
Các bạn giúp mình với cần gấp nhé ^_^
\(Q=\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
\(=\frac{\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x^2-4x+4}}.\frac{x}{x-1}\)
\(=\frac{\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}}{\sqrt{\left(x-2\right)^2}}.\frac{x}{x-1}\)
\(=\frac{\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}\)
Nếu \(x\ge2\) thì
\(Q=\frac{\sqrt{x-1}-1+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}=\frac{2x\sqrt{x-1}}{\left(x-2\right)\left(x-1\right)}=\frac{2x}{\left(x-2\right)\left(\sqrt{x-1}\right)}\)
Nếu \(x< 2\) thì \(Q=\frac{1-\sqrt{x-1}+\sqrt{x-1}+1}{x-2}.\frac{x}{x-1}=\frac{2x}{\left(x-2\right)\left(x-1\right)}\)
Cảm ơn bạn nhiều nhưng mình thấy \(1-\frac{1}{x-1}=\frac{x-2}{x-1}\) mà bạn sao lại bằng \(\frac{x}{x-1}\)được
Bài 1: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất.
\(a,P=4-\left(x-2\right)\)
b, Q = 20 - / 3 -x /
\(C,=\frac{5}{\left(x-3\right)^2+1}\)
\(d,D=\frac{x+5}{x-4}\)
MONG MỌI NGƯỜI GIÚP ĐỠ. Mai mình phải nộp cho cô giáo rồi. Mình đang cần rất gấp
Tìm x:
a)\(\left(4x+\frac{2}{3}\right).\left(\frac{2}{3}x-1\right)=0\)
b)\(\frac{x+2}{x-1}=\frac{5}{2}\)(x E Z;x khác 1)
c)\(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right).\left(x+2\right)}=\frac{2}{15}\)(x E Z; x khác 0;-1;-2)
Giúp mình đi mà mai nộp rồi,hu hu
a) => 4x + 2/3 = 0 hoặc 2/3x - 1 =0
4x= -2/3 hoặc 2/3x= 1
x = -2/3 . 1/4 hoặc x = 1.3/2
x = -1/6 hoặc x = 3/2
b) x+2 / x -1 = 5/2
=> 2(x+2) = 5(x-1)
2x + 4 = 5x - 5
5x - 2x= 4+5
3x = 9
=> x= 3
a) (4x+\(\frac{2}{3}\)) . ( \(\frac{2}{3}\)x-1)=0
\(\Rightarrow\)\(\orbr{\begin{cases}4x+\frac{2}{3}=0\\\frac{2}{3}x-1=0\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\\x=\end{cases}}\)........
Tới đây bn tự giải nha
còn câu c nữa các bạn ơi ,giúp mình với
Bài 1:Tìm x
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{215}{216}\)
giúp mình cách trình bày với nhé mai phải nộp rồi
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{x\left(x+1\right)}=\frac{215}{216}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{215}{216}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{215}{216}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{215}{216}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{216}\)
\(\Leftrightarrow x=216-1=215\)
Cho x và y là các số dương thỏa mãn x+y=1.
Tìm giá trị nhỏ nhất của \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Các bạn giỏi kiểu bài về phân số thì giúp mình với, mai mình phải nộp bài online cho cô rôi T_T
Cảm ơn các bạn tốt bụng giúp mình né <3333
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{25}{2}\)
Dấu "=" xảy ra tại x=y=1/2
Bạn giải thích rõ hơn được không? Mình không hiểu lắm :(((
Cho biểu thức:
A= \(\frac{2}{3}.\left(\frac{1}{1+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2}+\frac{1}{1+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2}\right).\frac{2010}{x+1}\)
Rút gọn và tìm Max của A
Bạn nào giải giúp mình bài này với
ĐKXĐ : \(x\ge0\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2}{\left[1+\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2\right]\left[1+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)^2\right]}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{2\sqrt{x}-1}{\sqrt{3}}+\frac{2\sqrt{x}+1}{\sqrt{3}}\right)^2-2\left(\frac{2\sqrt{x}-1}{\sqrt{3}}\right)\left(\frac{2\sqrt{x}+1}{\sqrt{3}}\right)}{\left[1+\frac{\left(2\sqrt{x}+1\right)^2}{3}\right]\left[1+\frac{\left(2\sqrt{x}-1\right)^2}{3}\right]}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\left(\frac{4\sqrt{x}}{\sqrt{3}}\right)^2-\frac{2\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{3}}{\left(\frac{4x+4\sqrt{x}+4}{3}\right)\left(\frac{4x-4\sqrt{x}+4}{3}\right)}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{2+\frac{16x}{3}-\frac{2\left(4x-1\right)}{3}}{\frac{16\left(x+1+\sqrt{x}\right)\left(x+1-\sqrt{x}\right)}{9}}.\frac{2010}{x+1}\)
\(A=\frac{2}{3}.\frac{\frac{6+16x-8x+2}{3}}{\frac{16\left(x+1\right)^2-16x}{9}}.\frac{2010}{x+1}\)
\(A=\frac{x+1}{x^2+x+1}.\frac{2010}{x+1}=\frac{2010}{x^2+x+1}\le2010\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=0\)
...
Ta có : \(x^2+x+1\ge1\)vì \(x\ge0\)
Nên \(M=\frac{2020}{x^2+x+1}\le\frac{2020}{1}=2020\)
Vậy Max của M là 2020 khi x = 0