Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Thị THu Uyên
Xem chi tiết
 ☘ Nhạt ☘
Xem chi tiết
zZz Cool Kid_new zZz
23 tháng 11 2019 lúc 15:14

Đặt \(3n^3+3n-101=a^3\)

\(\Leftrightarrow3n\left(n+1\right)-101=a^3\)

Thấy \(3n\left(n+1\right)\) là số chẵn,\(101\) lẻ nên \(n^3\) là số lẻ

Đặt \(n=2k+1\)

\(\Leftrightarrow3\left(n^2+n\right)-101=8k^3+12k^2+6k+1\)

\(\Leftrightarrow3\left(n^2+n-34\right)=8k^3+12k^2+6k\)

Thấy VT chia hết cho 3;\(12k^2+6k\) chia hết cho 3 nên \(8k^3\) chia hết cho 3

Mà \(\left(8;3\right)=1\Leftrightarrow k⋮3\)

Đặt \(k=3m\) ta có:

\(\Leftrightarrow3\left(n^2+n-34\right)=8\cdot27m^3+12\cdot9m^2+6\cdot3m\)

\(\Leftrightarrow n^2+n-34=6\left(12m^3+6m^2+m\right)\)

Nếu n chia hết cho 3 thì VT chia 3 dư 2 trong khi đó VP chia hết cho 3 ( loại )

Nếu m chia 3 dư 1 thì VT chia 3 dư 1 trong khi đó VP chia hết cho 3 ( loại )

Nếu m chia 3 dư 2 thì VT chia 3 dư 2 trong khi đó VP chia hết cho 3  ( loại )

Vậy không tồn tại n nguyên thỏa mãn đề bài.

Khách vãng lai đã xóa
Nguyễn Minh Tam
Xem chi tiết
Trần Xuân Trung
Xem chi tiết
Nguyễn Dương Ngọc Minh
Xem chi tiết

a: ĐKXĐ: n<>1

Để \(\frac{2n-1}{n-1}\) là số nguyên thì 2n-1⋮n-1

=>2n-2+1⋮n-1

=>1⋮n-1

=>n-1∈{1;-1}

=>n∈{2;0}

b: ĐKXĐ: n<>-1

Để \(\frac{3n+5}{n+1}\) là số nguyên thì 3n+5⋮n+1

=>3n+3+2⋮n+1

=>2⋮n+1

=>n+1∈{1;-1;2;-2}

=>n∈{0;-2;1;-3}

c: ĐKXĐ: n<>-3

Để \(\frac{4n-2}{n+3}\) là số nguyên thì 4n-2⋮n+3

=>4n+12-14⋮n+3

=>-14⋮n+3

=>n+3∈{1;-1;2;-2;7;-7;14;-14}

=>n∈{-2;-4;-1;-5;4;-10;11;-17}

d: ĐKXĐ: n<>-4/3

Để \(\frac{6n-4}{3n+4}\) là số nguyên thì 6n-4⋮3n+4

=>6n+8-12⋮3n+4

=>-12⋮3n+4

=>3n+4∈{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}

=>3n∈{-3;-5;-2;-6;-1;-7;0;-8;2;-10;8;-16}

=>n∈{\(-1;-\frac53;-\frac23;-2;-\frac13;-\frac73;0;-\frac83;\frac23;-\frac{10}{3};\frac83;-\frac{16}{3}\) }

mà n là số nguyên

nên n∈{-1;-2;0}

e: ĐKXĐ: n<>1/2

Để \(\frac{n+3}{2n-1}\) là số nguyên thì n+3⋮2n-1

=>2n+6⋮2n-1

=>2n-1+7⋮2n-1

=>7⋮2n-1

=>2n-1∈{1;-1;7;-7}

=>2n∈{2;0;8;-6}

=>n∈{1;0;4;-3}

f: \(\frac{6n-4}{3n-2}=\frac{2\left(3n-2\right)}{3n-2}=2\) là số nguyên với mọi n nguyên

g: ĐKXĐ: n<>1/3

Để \(\frac{2n+3}{3n-1}\) là số nguyên thì 2n+3⋮3n-1

=>6n+9⋮3n-1

=>6n-2+11⋮3n-1

=>11⋮3n-1

=>3n-1∈{1;-1;11;-11}

=>3n∈{2;0;12;-10}

=>n∈{2/3;0;4;-10/3}

mà n nguyên

nên n∈{0;4}

Phương Bella
Xem chi tiết
Nguyễn Đức Thắng
Xem chi tiết
Mây
27 tháng 2 2016 lúc 13:10

a/ Để \(\frac{n+3}{n-2}\) âm => \(\frac{n+3}{n-2}<0\)       mà  n - 2 < n + 3 => n - 2 < 0 => n < 2

Vậy n < 2 thì \(\frac{n+3}{n-2}\) là số âm.

b/ Để \(\frac{n+7}{3n-1}\) nguyên => n + 7 chia hết cho 3n - 1

=> 3 (n + 7) chia hết cho 3n - 1

=> 3n + 21 chia hết cho 3n - 1

=> 22 chia hết cho 3n - 1

=> 3n - 1 ∈ Ư(22) 

=> 3n - 1 ∈ { ±1 ; ±2 ; ±11 ; ±22 }

- Nếu 3n - 1 = 1 => 3n = 2 => n = 2/3 (ko thỏa mãn n ∈ Z)

- Nếu 3n - 1 = -1 => 3n = 0 => n = 0 (thỏa mãn)

- Nếu 3n - 1 = 2 => 3n = 3 => n = 1 (thỏa mãn)

- Nếu 3n - 1 = -2 => 3n = -1 => n = -1/3 (ko thỏa mãn n ∈ Z)

- Nếu 3n - 1 = 11 => 3n = 12 => n = 4 (thỏa mãn)

- Nếu 3n - 1 = -11 => 3n = -10 => n = -10/3 (ko thỏa mãn n ∈ Z)

- Nếu 3n - 1 = 22 => 3n = 23 => n = 23/3 (ko thỏa mãnn ∈ Z)

- Nếu 3n - 1 = -22 => 3n = -21 => n = -7 (thỏa mãn)

Vậy n ∈ { 0 ; 1 ; 4 ; -7 } thì \(\frac{n+7}{3n-1}\)  là số nguyên.

c/ Để \(\frac{3n+2}{4n-5}\in N\) => 3n + 2 chia hết cho 4n - 5

=> 4 (3n + 2) chia hết cho 4n - 5

=> 12n + 8 chia hết cho 4n - 5

=> 23 chia hết cho 4n - 5 

=> 4n - 5 ∈ Ư(23)

=> 4n - 5 ∈ { 1 ; 23 }

- Nếu 4n - 5 = 1 => 4n = 6 => n = 3/2 (ko thoả mãn n ∈ Z)

- Nếu 4n - 5 = 23 => 4n = 28 => n = 7 (thỏa mãn)

Vậy n = 7 thì \(\frac{3n+2}{4n-5}\in N\)

Huỳnh Minh Toàn
Xem chi tiết

a: ĐKXĐ: n<>2

Đặt \(A=\frac{n+1}{n-2}\)

Để A là số nguyên âm thì \(\begin{cases}n+1\vdots n-2\\ \frac{n+1}{n-2}<0\end{cases}\Rightarrow\begin{cases}n-2+3\vdots n-2\\ -1

=>\(\begin{cases}3\vdots n-2\\ -1

=>n=1

b: \(\frac{n+7}{3n-1}\) là số nguyên

=>n+7⋮3n-1

=>3n+21⋮3n-1

=>3n-1+22⋮3n-1

=>22⋮3n-1

=>3n-1∈{1;-1;2;-2;11;-11;22;-22}

=>3n∈{2;0;3;-1;12;-10;23;-21}

=>n∈{2/3;0;1;-1/3;4;-10/3;23;-7}

mà n là số nguyên

nên n∈{0;1;4;-7}

c: \(\frac{3n+2}{4n-5}\) là số tự nhiên

=>\(\begin{cases}3n+2\vdots4n-5\\ \frac{3n+2}{4n-5}\ge0\end{cases}\Rightarrow\begin{cases}12n+8\vdots4n-5\\ \left[\begin{array}{l}n>\frac54\\ n\le-\frac23\end{array}\right.\end{cases}\)

=>\(\begin{cases}12n-15+23\vdots4n-5\\ \left[\begin{array}{l}n>\frac54\\ n\le-\frac23\end{array}\right.\end{cases}\Rightarrow\begin{cases}23\vdots4n-5\\ \left[\begin{array}{l}n>\frac54\\ n\le-\frac23\end{array}\right.\end{cases}\)

=>\(\begin{cases}4n-5\in\left\lbrace1;-1;23;-23\right\rbrace\\ \left[\begin{array}{l}n>\frac54\\ n<=-\frac23\end{array}\right.\end{cases}\Rightarrow\begin{cases}n\in\left\lbrace\frac12;1;7;-\frac92\right\rbrace\\ \left[\begin{array}{l}n>\frac54\\ n\le-\frac23\end{array}\right.\end{cases}\)

=>n=7


Nguyễn Tường Vân
Xem chi tiết
Akai Haruma
17 tháng 4 2023 lúc 23:11

Lời giải:

$A=\frac{3n+5}{3n-2}=\frac{(3n-2)+7}{3n-2}=1+\frac{7}{3n-2}$

Để $A$ nguyên thì $\frac{7}{3n-2}$ nguyên. 

Với $n$ nguyên thì điều này xảy ra khi $7\vdots 3n-2$

$\Rightarrow 3n-2\in\left\{\pm 1; \pm 7\right\}$

$\Rightarrow n\in\left\{1; \frac{1}{3}; 3; \frac{-5}{3}\right\}$

Vì $n$ nguyên nên $n\in\left\{1;3\right\}$