Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phandangnhatminh
Xem chi tiết
My Lê
24 tháng 11 2016 lúc 19:59

n\(^3\) -n\(^2\) -7n +10

=n\(^3\) -2n\(^2\) +n\(^2\) -2n-5n+10

=(n-2)(n\(^2\) +n-5) (bạn nhóm lại rồi rút nhân tử chung nha)

Vì P nguyên tố nên

=> n-2=1 =>n=3 (nhận)

=>n\(^2\) +n-5=1 => n=2 (nhận) hoặc n=-3(loại)

ta có: n=3 =>P=7(nhận) (bạn thế n vào biểu thức P rồi tính ra)

n=2 => P=0(loại)

vậy n cần tìm là n=3

phandangnhatminh
25 tháng 11 2016 lúc 18:31

nếu n=1 thì k vẫn là số nguyên tố mà bạn

Mai Ngô Quỳnh
Xem chi tiết
Ngô Chi Lan
15 tháng 6 2021 lúc 9:34

Ta có:\(P=n^3-n^2+7n+10\)

\(=n^3-2n^2+n^2-2n-5n+10\)

\(=n^2\left(n-2\right)+n\left(n-2\right)-5\left(n-2\right)\)

\(=\left(n-2\right)\left(n^2+n-5\right)\)

Vì P là số nguyên tố nên 

\(n-2=1\Rightarrow n=3\)(nhận)

\(n^2+n-5=1\)\(\Rightarrow n^2+n-6=0\Rightarrow\left(n+3\right)\left(n-2\right)=0\Rightarrow n=-3\left(l\right);n=2\left(n\right)\)

Ta có:\(\hept{\begin{cases}n=3\Rightarrow P=7\left(n\right)\\n=2\Rightarrow P=0\left(l\right)\end{cases}}\)

Vậy n=3

Khách vãng lai đã xóa
Đoàn Đức Hà
15 tháng 6 2021 lúc 9:53

\(P=n^3-n^2-7n+10=\left(n-2\right)\left(n^2+n-5\right)\)

- Với \(n-2< 0\Leftrightarrow n< 2\).

Bằng cách thử trực tiếp \(n=0,n=1\)thu được \(n=1\)thỏa mãn \(P=3\)là số nguyên tố. 

- Với \(n-2\ge0\)thì \(n-2\ge0,n^2+n-5>0\)khi đó \(P\)có hai ước tự nhiên là \(n-2,n^2+n-5\).

Để \(P\)là số nguyên tố thì: 

\(\orbr{\begin{cases}n-2=1\\n^2+n-5=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=3\\n=2,n=-3\end{cases}}\)

Thử lại các giá trị trên thu được \(n=3\)thì \(P=7\)thỏa mãn. 

Vậy \(n=1\)hoặc \(n=3\)

Khách vãng lai đã xóa
Nguyễn Thị Phương Thảo
Xem chi tiết
Kunzy Nguyễn
22 tháng 7 2015 lúc 8:42

Đặt biểu thức n3 – n2– 7n + 10 bằng A 

A= n3 – 2n2 + n2 – 2n – 5n +10

A= (n – 2)(n2 + n – 5).
 Để n3-n2-7n+10 là số nguyên tố thì  
* n = 3 =>  A = 7.
* n = 2 =>A = 0 (loại).
Vậy n = 3 là giá trị cần tìm.

Thái Trần Thảo Vy
Xem chi tiết
Hoàng Quốc Khánh
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Nguyễn Thị Thanh Trúc
Xem chi tiết
alibaba nguyễn
3 tháng 1 2017 lúc 11:26

Xem lại cái đề thử đúng chưa nhé

ngonhuminh
3 tháng 1 2017 lúc 14:44

\(U\left(n\right)=n^3-n^2-7n+1\)

U(0)=1;U(2)==-9;U(3)=-1;U(4)=21

Đặt n=(p+4) {xét luôn dương đỡ loạn)

\(U\left(p\right)=p^3+11p^2+40p+21\) (*)Với P thuộc N => U(P) luôn dương 

\(U\left(p\right)=p^3+2p^2+p+\left(9p^2+39p+21\right)\)(**)

\(U\left(p\right)=p\left(p+1\right)^2+\left(9p^2+39p+21\right)\)(***)

với p=3 U(3)=27+11.9+40.3+21=89 nguyên tố (nhận)

với p> 3 p=3k hiển nhiên (**) U(p) không nguyên tố

với p=3k+2=> (p+1)=3k+3 chia hết cho 3=> U(p) không nguyên tố

với p=3k+1=>p(p+1)^2 chia 3 dư 1

xét tiếp:

với k =2t+1 hiển nhiên p chẵn => (***) H(p) chia hết cho 2 loại

=> P có dạng 6k+1: với k=1=>P=7 \(\frac{U\left(7\right)}{7}=169=13^2\)Loại

"thôi quá dài -xét tiếp có lẽ => U(p) hợp số nhưng mỏi lắm:

Tạm chấp nhận p=3; n=7  (c/m hoàn chỉnh hoặc tìm ra con nào lớn hơn 89 dành cho @Ailibaba)

alibaba nguyễn
3 tháng 1 2017 lúc 18:07

Xem lại bài giải nhé ngonhuminh. 89 có là giá trị làm cho n tự nhiên không nhé. Cho ngonhuminh 1 đáp án lớn hơn nè. Với n = 6 thì số cần tìm là 139

Nguyễn Uy Vũ
Xem chi tiết