Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hung789456

Những câu hỏi liên quan
Tô Thị Mai Trang
Xem chi tiết
Tô Thị Mai Trang
Xem chi tiết
나 재민
2 tháng 3 2018 lúc 19:19

\(1) VP= \frac{1}{n}-\frac{1}{n+1}\)\(= \frac{n+1}{n(n+1)}-\frac{n}{n(n+1)}\)\(= \frac{n+1-n}{n(n+1)}\)\(= \frac{1}{n(n+1)}\)\(= VT\)

2) \(VP= \frac{1}{n+1}-\frac{1}{(n+1)(n+2)}= \frac{(n+2)}{n(n+1)(n+2)}-\frac{n}{n(n+1)(n+2)}\)\(= \frac{n+2-n}{n(n+1)(n+2)}= \frac{2}{n(n+1)(n+2)}=VT\)

3) \(VP= \frac{1}{n(n+1)(n+2)}-\frac{1}{(n+1)(n+2)(n+3)}=\frac{n+3}{n(n+1)(n+2)(n+3)}-\frac{n}{n(n+1)(n+2)(n+3)}\)\(= \frac{n+3-n}{n(n+1)(n+2)(n+3)}=\frac{3}{n(n+1)(n+2)(n+3)(n+4)}=VT\)

Những ý sau làm tương tự, thế mà chẳng thèm mở mồm ra hỏi bạn :))

배 성 달
2 tháng 3 2018 lúc 21:44

chị thương ơi gửi em câu 6,7

배 성 달
20 tháng 3 2018 lúc 20:56

chị thương ơi gửi em đề bài câu 9,10 toán bài 2

Thạch Phạm Văn
Xem chi tiết
Die Devil
5 tháng 8 2016 lúc 9:24

Đặt A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/(2n - 1)(2n + 1)
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/(2n - 1)(2n + 1)
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/(2n - 1) - 1/(2n + 1)
2.A = 1 - 1/(2n + 1) = 2n/(2n + 1)
Vậy A = n/(2n + 1)

Huyền Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2021 lúc 21:10

Chọn C

Uyên Nguyễn
Xem chi tiết
Toàn Quyền Nguyễn
15 tháng 1 2017 lúc 20:34
Ta có: 1.3.5...(2n - 1) = { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n) = (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ] = {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ] = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) => 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương => [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương => [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2) Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2) Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2) => [ (n + 1)(n + 2)...2n ] chia hết cho 2^n 
dam quang tuan anh
15 tháng 1 2017 lúc 20:30

Ta có: 1.3.5...(2n - 1) 
= { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n) 
= (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ] 
= {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ] 
= [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
=> 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương 
=> [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương 
=> [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2) 
Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2) 
Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2) 
=> [ (n + 1)(n + 2)...2n ] chia hết cho 2^n 

Nguyễn Hoàng Ngân
Xem chi tiết
Nguyễn Minh Trường
Xem chi tiết
Nguyễn Minh Chi
Xem chi tiết
vu thi hoai bang
21 tháng 12 2020 lúc 12:33

biết rồi

Khách vãng lai đã xóa
Trịnh Công Hiếu
Xem chi tiết
Dương Võ
Xem chi tiết
Nguyễn Đắc Nhật
1 tháng 12 2017 lúc 21:06

2.a)n^5+1⋮n^3+1

⇒n^2.(n^3+1)-n^2+1⋮n^3+1

⇒1⋮n^3+1

⇒n^3+1ϵƯ(1)={1}

ta có :n^3+1=1

n^3=0

n=0

Vậy n=0

b)n^5+1⋮n^3+1

Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0

Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!