CMR 1chia hết cho 1
ta có tích \(\left(2^n+1\right)\left(2^n-1\right)=4^n-1\)chia hết vho 3 bởi vì
4 chia 3 dư 1
do đó \(4^n\)chia 3 dư 1 với mọi n hay
\(4^n-1\)chia hết cho 3, mà \(2^n-1\)không chia hết cho 3 nên \(2^n+1\)chia hết cho 3
b) cmr 10^n+18n-1 chia hết cho 27
c) cmr 10^n+72n-1chia het cho 81
b) Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
c) 10^n+72n-1
=10^n-1+72n
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.
cmr với mọi n thuộc Z thì(n^2+n-1)^2-1chia hết cho 24
Xét : ( x-1 ).( x+1 )
= x^2 + x - x -1
= x^2 - 1
Có : x.(x^2 - 1)
= x.( x-1 ).( x+1 )
= ( x - 1 ).x.( x+1 )
Do x-1; x; x+1 là 2 số nguyên liên tiếp
=> ( x - 1 ).x.( x+1 ) chia hết cho 3
=> x.(x^2 - 1) chia hết cho 3
Vậy....
Cho 10.k-1chia hết cho 19 với k>1. CMR
a) 10^2.k - 1 chia hết cho 19
b) 10^3.k - 1 chia hết cho19
CMR
2x^12 -1chia hết cho 15
bn pham bao lam ăn ns thô tục quá,bớt đi, bn mới lp 5 chưa làm đc thì đừng có trả lời lung tung nx
CMR a^4+1chia hết cho 30 ta có n không chia hết cho 3, 5
Đề lúc $a$ lúc $n$ là sao bạn nhỉ?
cmr nếu p và 10p+1 là 2 số nguyên tố,p>3 thì p+1chia hết cho 6
Sua dau bai la CMR neu p va 10p-1 la 2 so nguyen to ,p>3 thi p+1 chia het cho 6
Vi p la 2 so nguyen to suy ra p la so le suy ra p+1 la so chan suy ra p+1 chia het cho 2(1)
Vi p la so nguyen to lon hon 3 nen p co 2 dang:
3k+1;3k+2(k thuoc N*)
Voi p =3k+1
Ta co:10p-1=10(3k+1)-1=10x3k+10-1=10X3k+9=3(10k+3)
Voi k thuoc N* suy ra 3(10k+3) chia het cho 3 va 3(10k+3)>3 suy ra 3(10k+3) la hop so hay 10p-1 la hop so(loai)
Voi p=3k+2
Ta có p+1=3k+2+1=3k+3=3(k+1)
Với k thuộc N* suy ra 3(k+1) chia hết cho 3 suy ra p+1 chia het cho 3(2)
Ma (2;3)=1(3)
Từ(1);(2);(3) suy ra p+1 chia hết cho 2x3
hay p+1 chia het cho 6
Vay neu p va 10p-1 la 2 so nguyen ,p>3 thi p+1 chia het cho 6
CHTT
Ai đi qua tick cho tớ vài cái nhé
1.Cho 10k-1 chia hết cho 19 với k>11.CMR
a,102k -1 chia hết cho 19
b,103 -1chia hết cho 19
10k - 1 chia hết cho 19 nên 10k = 19m + 1
k cho mik nha Hiền xinh đẹp ^_<
CMR 2009^2010+1chia hết cho 2010
giải hộ mk nhêseseses