Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hoàng Long
Xem chi tiết
Minh Nguyễn
Xem chi tiết
Lan Bui
Xem chi tiết
Xyz OLM
27 tháng 1 2022 lúc 19:27

a) Ta có f(x) - 5 \(⋮\)x + 1 

=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1

=> x3 + mx2 + nx  - 3 \(⋮\)x + 1

=> x = - 1 là nghiệm đa thức 

Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0

<=> m - n = 4 (1) 

Tương tự ta được f(x) - 8 \(⋮\)x + 2 

=> x3 + mx2 + nx - 6 \(⋮\) x + 2

=> x = -2 là nghiệm đa thức

=> (-2)3 + m(-2)2 + n(-2) - 6 = 0

<=> 2m - n = 7 (2) 

Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)

Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2  

Xyz OLM
27 tháng 1 2022 lúc 19:37

b)  f(x) - 7 \(⋮\)x + 1

=> x3 + mx + n - 7 \(⋮\) x + 1 

=> x = -1 là nghiệm đa thức 

=> (-1)3 + m(-1) + n - 7 = 0

<=> -m + n = 8 (1) 

Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3 

=> x = 3 là nghiệm đa thức 

=> 33 + 3m + n + 5 = 0

<=> 3m + n = -32 (2) 

Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)

Vậy f(x) = x3 - 10x -2

Nguyễn Tuấn Minh
Xem chi tiết
Dương Lê
Xem chi tiết
Akai Haruma
12 tháng 7 2023 lúc 23:37

Lời giải:

Theo định lý Bê-du về phép chia đa thức thì số dư của $f(x)$ chia cho $x-a$ có số dư là $f(a)$. 

Áp dụng vào bài:

$f(2)=8a+4b+10=14\Leftrightarrow 2a+b=1(1)$

$f(-1)=-a+b-14=-16\Leftrightarrow -a+b=-2(2)$

Từ $(1); (2)\Rightarrow a=1; b=-1$

 

giang nguyen
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
zZz Cool Kid_new zZz
9 tháng 12 2019 lúc 21:46

Èo,phân tích ra tưởng cái hệ 3 ẩn r định bỏ cuộc và cái kết:(

Ta có:

\(f\left(x\right)=\left(x-2\right)\cdot Q\left(x\right)+5\)

\(f\left(x\right)=\left(x+1\right)\cdot K\left(x\right)-4\)

Theo định lý Huy ĐZ ta có:

\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\left(1\right)\)

\(\Rightarrow f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\left(2\right)\)

Lấy \(\left(1\right)-\left(2\right)\) ta được:

\(9+3a+3b=9\Leftrightarrow a+b=0\)

Khi đó:

\(\left(a^3+b^3\right)\left(b^5+c^5\right)\left(c^7+d^7\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\left(b^5+c^5\right)\left(c^7+a^7\right)\) 

\(=0\) ( theo Huy ĐZ thì \(a+b=0\) )

Khách vãng lai đã xóa
Upin & Ipin
9 tháng 12 2019 lúc 21:56

Ap dung dinh ly Bozout ta co

\(f\left(2\right)=2^3+a.2^2+b.2+c=5\)

<=> \(4a+2b+c=-3\) (1)

tuong tu \(f\left(-1\right)=\left(-1\right)^3+a-b+c=-4\)

<=> \(a-b+c=-3\) (2)

tu (1) va (2) => \(4a+2b=a-b=-3\) 

=> a=b+-3

=> \(4\left(b-3\right)+2b=-3\Rightarrow b=\frac{3}{2}\)

=> \(a=-\frac{3}{2}\)

=> \(\left(a^3+b^3\right)=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(\frac{3}{2}-\frac{3}{2}\right)\left(a^2-ab+b^2\right)=0\)

=> gia tri bieu thuc =0

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
9 tháng 12 2019 lúc 21:59

Upin & Ipin Sai rồi man,\(3a+2b=a-b=-3?????\)

\(a-b+c=-3\) mới đúng nha,xem cách của mình đi,có lẽ đúng đấy.

Khách vãng lai đã xóa
Ngô Linh
Xem chi tiết
Phạm Tuấn Tài
Xem chi tiết
Le Thi Khanh Huyen
3 tháng 1 2017 lúc 19:23

Áp dụng định lý Bézout , dư của đa thức f(x) cho nhị thức bậc nhất x - a là f(a), ta có :

\(a^3+a.\left(-1\right)+b=7\) ( 1 )

\(a^3+3a+b=5\) ( 2)

Trừ (1) cho (2) ta có :

\(-4a=7-5=2\Rightarrow a=-0,5\)

Bạn từ đó tính b là được.