Tìm x y để đa thức D có giá trị bằng 0 D=5x^2+2y^2
Cho hai đa thức: A=\(5x^3+y^3-3x^2y+4xy^2;B=4x^3-6x^2y+xy^2\)
a. Tìm đa thức C = A− B; D = A + B và tìm bậc của chúng.
b. Tính giá trị của D tại x = 0; y = −2.
c. Tính giá trị của C tại x = y = −1.
a: C=A-B
\(=5x^3+y^3-3x^2y+4xy^2-4x^3+6x^2y-xy^2\)
\(=x^3+3x^2y+3xy^2+y^3\)
D=A+B
\(=5x^3+y^3-3x^2y+4xy^2+4x^3-6x^2y+xy^2\)
\(=9x^3-9x^2y+5xy^2+y^3\)
bậc của C là 3
bậc của D là 3
b: Thay x=0 và y=-2 vào D, ta được:
\(D=9\cdot0^3-9\cdot0^2\left(-2\right)+5\cdot0\cdot\left(-2\right)^2+\left(-2\right)^3\)
\(=0-0+0-8=-8\)
c: Thay x=-1 và y=-1 vào C, ta được:
\(C=\left(-1\right)^3+3\cdot\left(-1\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)\cdot\left(-1\right)^2+\left(-1\right)^3\)
=-8
Tìm giá trị của đa thức sau: H=3x^4+5x^2y^+2y^2+2x^2 biết x^2-y^2=0.
Tìm giá trị của đa thức sau: H=3x^4+5x^2y^+2y^2+2x^2 biết x^2-y^2=0.
Tìm giá trị của đa thức sau: H=3x^4+5x^2y^+2y^2+2x^2 biết x^2-y^2=0.
Cho 2 đa thức: G(x)= 3xy^2+5x^2y^2-6^2y và H(x)= 4x^2y-2xy^2-3x^2y^2. CM: không có giá trị nào của x, y để 2 đa thức cùng có giá trị âm.
Anh chị nào giúp em với, em cho một tick!
Cho đa thức A=x2 -3xy-y2+2x-3y+1
B=-2x2+xy+2y2-5x+2y-3
C=3x2 -4xy+7y2-6x+4y+5
D=-x2+5xy-3y2+4x-7y-8
a. Tính giá trị đa thức: A+B; C-D tại x=-1 và y=0
b. Tính giá trị đa thức: A-B+C-D tai x=\(\frac{1}{2}\)và y =-1
cho đa thức A=x2 -3xy-y2+2x-3y+1
B=-2x2+xy+2y2-5x+2y-3
C=3x2 -4xy+7y2-6x+4y+5
D=-x2+5xy-3y2+4x-7y-8
a. Tính giá trị đa thức: A+B; C-D tại x=-1 và y=0
b. Tính giá trị đa thức: A-B+C-D tại x= \(\frac{1}{2}\)và y =-1
Cho đa thức A=x2 -3xy-y2+2x-3y+1
B=-2x2+xy+2y2-5x+2y-3
C=3x2 -4xy+7y2-6x+4y+5
D=-x2+5xy-3y2+4x-7y-8
a. Tính giá trị đa thức: A+B; C-D tại x=-1 và y=0
b. Tính giá trị đa thức: A-B+C-D tai x=12 và y =-1
Cho đa thức :H=\(6X^3Y^4-2X^4Y^2+3X^2Y^2+5X^4Y^2-AX^3Y^4\) (A là hằng số).
a. Biết rằng bậc của đa thức bằng 6. Tìm a ?
b. Với giá trị của a vừa tìm được, chứng minh đa thức H luôn nhận giá trị dương với mọi
x khác 0; y KHÁC 0.
a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)
\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)
\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)
Để H có bậc là 6 thì 6-A=0
=>A=6
b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)
\(=3x^4y^2+3x^2y^2\)
\(=3x^2y^2\left(x^2+1\right)\)
\(x^2+1>1>0\forall x\ne0\)
\(x^2>0\forall x\ne0\)
\(y^2>0\forall y\ne0\)
Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)
=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)
=>H luôn dương khi x,y khác 0