Cho hai số a và b . Biết 11a = 8b và b - a = 190 . Tìm 2 số a và b
1)hãy tìm
a)số nhỏ nhất có 4 chữ số chia hết cho 2 và 3
b)số nhỏ nhất có bốn chữ số chia hết cho 5 và 9
2)tìm các chữ số a,b sao cho b857a chia hết cho 3 và 4
3)cho a và b là hai số nguyên tố cùng nhau hãy tính
a)UCLN ( 5a+3b ; 13a+8b )
b)UCLN ( 18a+5b ; 11a+3b )
Bài 1 : Tìm 2 số tự nhiên a,b biết rằng : a+b =128 và (a,b )=16
Bài 2: Cho 2 số nguyên tố cùng nhau a và b .Chứng tỏ rằng 2 số 11a+ 2b và 18a+5b hoặc nguyên tố cùng nhau hoặc có 1 ước chung là 19
Gọi d là ƯCLN của 11a + 2b và 18a + 5b
Khi đó : 11a + 2b chia hết cho d và 18a + 5b chai hết cho d
<=> 18(11a + 2b) chia hết cho d và 11(18a + 5b) chia hết cho d
<=> 198a + 36b chia hết cho d và 198a + 55b chia hết cho d
=> (198a + 55b) - (198a + 36b) = 19b chia hết cho d
=> 19 chia hết cho d
=> d = 1
Vậy 11a + 2b và 18a + 5b nguyên tố cũng nhau
BÀI 1:
Vì \(\left(a,b\right)=16\) nên \(a=16.m,b=16.n\)và \(\left(m,n\right)=1\)
Vì \(a+b=128\)nên \(16m+16n=128\Rightarrow m+n=8\)
Vì \(\left(m,n\right)=1\)và \(m+n=8\)nên ta có 4 trường hợp như sau:
..\(m=1\)và \(n=7\Rightarrow a=16.1=16\)và \(b=16.7=112\)
..\(m=3\)và \(n=5\Rightarrow a=16.3=18\)và \(b=16.5=80\)
..\(m=5\)và \(n=3\Rightarrow a=16.5=80\)và \(b=16.3=48\)
..\(m=7\)và \(n=1\Rightarrow a=16.7=112\)và \(b=16.1=16\)
Vậy bài toán có 4 đáp số là
a | 16 | 48 | 80 | 112 |
b | 112 | 80 | 48 | 16 |
Bài 2
Gọi \(d=\left(11a+2b,18a+5b\right)\Rightarrow\hept{\begin{cases}11a+2b⋮d\\18a+5b⋮d\end{cases}}\)
\(\Rightarrow\left(11.\left(18a+5b\right)-18\left(11a+2b\right)\right)⋮d\)hay \(19b⋮d\)
và \(\left(5.\left(11a+2b\right)-2.\left(18a+5b\right)\right)⋮d\)hay \(19a⋮d\)
\(\Rightarrow\left(19a,19b\right)⋮d\)hay \(19.\left(a,b\right)⋮d\Rightarrow19⋮d\)
Vậy d=1 hoặc d=19 ,tương ứng hai số \(11a+2b\)và \(18a+5b\)hoặc nguyên tố cùng nhau hoặc có 1 ước chung là 19
Chúc bạn học tốt ( -_- )
a) Cho a, b ∈ N. Chứng minh nếu (5a + 3b) và (13a + 8b) cùng chia hết cho 2018 thì a và
b cũng chia hết cho 2018.
b) Cho a, b ∈ N* thỏa mãn M = (9a + 11b).(5a + 11a) ⋮ 19. Chứng minh M ⋮ 361.
Bài 3: Cho p, q là các số nguyên tố lớn hơn 5. Chứng minh p4 + 2019.q4 ⋮ 20.
Bài 4: Tìm số tự nhiên a nhỏ nhất sao cho (a + 1) chia hết cho 2, a chia hết cho tích hai số
nguyên tố liên tiếp và tích 2023a là số chính phương
cho hai số a,b nguyên tố cùng nhau . tìm (11a+2b;18a+5b) biệt 11a+2b và 18a+5b không nguyên tố cùng nhau
Gọi d là ước chung của (11a + 2b) và (18a + 5b)
\(\Rightarrow\)(11a + 2b) chia hết cho d và (18a + 5b) chia hết cho d
\(\Rightarrow\)18(11a + 2b) và 11(18a + 5b) chia hết cho d
\(\Rightarrow\)11(18a + 5b) - 18(11a + 2b) = 19b chia hết cho d
\(\Rightarrow\)19 chia hết cho d hoặc b chia hết cho d (1)
Tương tự ta cũng có: 5(11a + 2b) và 2(18a + 5b) chia hết cho d
\(\Rightarrow\)5(11a + 2b) - 2(18a + 5b) = 19a chia hết cho d
\(\Rightarrow\)19 chia hết cho d hoặc a chia hết cho d (2)
Từ (1) và (2) suy ra d là dược của 19 hoặc d là ước chung của a và b
\(\Rightarrow\)d = 19 hoặc d = 1
Vậy ước chung của (11a + 2b) và (18a + 5b) là 19 và 1
PS: Nếu đề bài bảo tìm ước chung lớn nhất thì đó là 19 nhé
1 Tìm 2 số tự nhiên a và b biết a - b=5 và (a,b)/[a,b]=1/6
2. Tìm x,y là số nguyên sao cho y/3 - 1/x=1/3
3. Tìm số nguyên tố x và y biết x2 + 45= y2
4. Tìm số tự nhiên 11/17<a/b<23/29 và 8b - 9a=31
1, Tìm hai số tự nhiên a và b biết: a, a2 -a=21
b, a2 + b2 -a - b=2015
2, Cho hai số tự nhiên a và b, chứng minh nếu 11a + 2b chia hết cho 19 thì 18a + 5b cũng chia hết cho 19
3,a, Cho a và b cùng chia hết cho 3. Chứng minh a2 + ab + b2 chia hết cho 9.
b, Cho (a-b)2 + 3ab chia hết cho 9. Chứng minh a chia hết cho 3 hoặc b chia hết cho 3.
Vì a chia hết cho 3 => a2 chia hết cho 9
Vì b chia hết cho 3 => b2 chia hết cho 9
Vì a, b chia hết cho 3 => ab chia hết cho 3.3 = 9
=> a2 + ab + b2 chia hết cho 9
cho a,b là hai số nguyên tố cùng nhau . Tìm ƯCLN của 11a+2b và 18a+5b
Gọi d là ƯCLN của 11a +2b và 18a +5b => 11a +2b chia hết cho d và 18a +5b chia hết cho d
=> 18.(11a + 2b) chia hết cho d và 11(18a + 5b) chia hết cho d
=> 11(18a + 5b) - 18.(11a + 2b) chia hết cho d => 19 b chie hết cho d => 19 chia hết cho d hoặc b chia hết cho d => d là ước của 19 hoặc d là ước của b
tương tự ta cũng có 5.(11a + 2b) chia hết cho d và 2(18a + 5b) chia hết cho d
=> 5.(11a + 2b) - 2(18a + 5b) chia hết cho d => 19a chia hết cho d => 19 chia hết cho d hoặc a chia hết cho d => d là ước của 19 hoặc d là ước của a (2)
Từ (1) và (2) suy ra d là ước của 19 hoặc d là ước chung của a và b => d = 19 hoặc d = 1
Vậy ƯCLN của 11a + 2b và 18a + 5b là 19 hoặc 1
chi tiêt thêm: ta có a.b = BCNN (a,b).ƯCLN(a,b) = 84.14 =1176
ƯCLN(a,b) = 14 nên a = 14c, b = 14d ( c và d nguyên tố cùng nhau)
=> 14c. 14d = 14 . 84 => c.d = 6
Vì a>b nên c>d , chọn hai số c, d nguyên tố cùng nhau có tích bằng 6 ta có c = 6, d = 1 hoặc c = 3, d = 2
*) với c = 6, d = 1 => a = 14.6 = 84, b = 14.1 = 14
*) với c = 3, d = 2 => a = 14 . 3 = 42, b = 14 .2 = 28
Bài 3 : Cho x/2=y/3=z/5 . Tìm x,y,z biết : x-2y+3z=22
Bài 4 : Cho 3x=2y;7y=5z . Tìm x,y,z biết :x-y+z=32
Bài 5 : Cho a/b=c/d (a,b,c,d ∈ Q*) CMR : 7a^2+3ab/11a^2-8b^2 = 7c^2+3cd/11a^2-8d^ .
Giúp mik vs mik cần gấp
1) Hãy cho biết số tự nhiên 12 bằng tích của hai số nào?
2) Tích của hai số tự nhiên a và b bằng 12 . Tìm a và b, biết a < b .
3) Hãy cho biết số tự nhiên 30 bằng tích của hai số tự nhiên nào?
4) Tích của hai số tự nhiên a và b bằng 30 . Tìm a và b, a > b .
1) 12 = 1.12 = 2.6 = 3.4 = 4.3 = 6.2 = 12.1
2) 12 = 1.12 = 2.6 = 3.4
Vậy (a; b) ∈ {(1; 12); (2; 6); (3; 4)}
3) 30 = 1.30 = 2.15 = 3.10 = 5.6 = 6.5 = 10.3 = 15.2 = 30.1
4) 30 = 30.1 = 15.2 = 10.3 = 6.5
Vậy (a; b) ∈ {(30; ); (15; 2); (10; 3); (6; 5)}
a, Ta có: 12 = 1 x 12; 2 x 6; 3 x 4
b, Ta có: 12 = 1 x 12; 2 x 6; 3x 4
Theo đề bài, ta có điều kiện: a < b
=> a ϵ {1; 2; 3}
=> b ϵ {12; 6; 4}
Vậy các cặp số (a; b) cần tìm là:
(a; b) ϵ {(1; 12); (2; 6); (3; 4)}
c, Ta có: 30 = 1 x 30; 2 x 15; 3 x 10; 5 x 6
d, Ta có: 30 = 1 x 30; 2 x 15; 3 x 10; 5 x 6
Theo đề bài, ta có điều kiện: a > b
=> a = 30; b = 1
=> a = 15; b = 2
=> a = 10; b = 3
=> a = 6; b = 5
Vậy ta có các cặp số (a; b) thỏa mãn đề bài là:
(a; b) ϵ {(30; 1); (15; 2); (10; 3); (6; 5}