CMR a= (n+1)^4+n^4+1 chia hết cho một số chính phương khác 1 với mọi số nguyên
\(CMR:\) a) \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6 với mọi số nguyên n
b) \(20^{n+1}-20^n\) chia hết cho 19 với mọi số tự nhiên n
M.n giúp mink nha, cảm ơn nhìu !!!
a) Ta có:
\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).
b) Ta có:
\(20^{n+1}-20^n=20^n\cdot19\)
Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)
Mọi người ráng giúp mình với ạ. Mọi người làm được bài nào thì làm không cần phải làm hết đâu ạ.
Bài 1:
a) CMR: Tổng lập phương 3 số nguyên liên tiếp chia hết cho 9.
b) 111....1(2n chữ số 1)
222....2 (n chữ số 2)
CMR: B= 111.....1 - 222....2 là số chính phương. Bài 2: Tìm x,y thỏa:
a) x^2+y^2-4*x+4*y+5=0
b) x^2+y^2=x+y+8
c) x^2+x*y+y^2=x^2*y^2
Mọi người ráng giúp mình với ạ.
Bài 1:
a) CMR: Tổng lập phương 3 số nguyên liên tiếp chia hết cho 9.
b) 111....1(2n chữ số 1)
222....2 (n chữ số 2)
CMR: B= 111.....1 - 222....2 là số chính phương.
Bài 2: Tìn x,y thỏa:
a) x^2+y^2-4*x+4*y+5=0
b) x^2+y^2=x+y+8
c) x^2+x*y+y^2=x^2*y^2
Bài 1:
a) CMR: Tổng lập phương 3 số nguyên liên tiếp chia hết cho 9.
b) 111....1(2n chữ số 1)
222....2 (n chữ số 2)
CMR: B= 111.....1 - 222....2 là số chính phương.
Bài 2: Tìm x,y thỏa:
a) x^2+y^2-4*x+4*y+5=0
b) x^2+y^2=x+y+8
c) x^2+x*y+y^2=x^2*y^2
Mọi người ráng giúp mình với ạ.
Bài 1:
a) CMR: Tổng lập phương 3 số nguyên liên tiếp chia hết cho 9.
b) 111....1(2n chữ số 1)
222....2 (n chữ số 2)
CMR: B= 111.....1 - 222....2 là số chính phương. Bài 2: Tìm x,y thỏa:
a) x^2+y^2-4*x+4*y+5=0
b) x^2+y^2=x+y+8
c) x^2+x*y+y^2=x^2*y^2
Bài 1:
a) CMR: Tổng lập phương 3 số nguyên liên tiếp chia hết cho 9.
b) 111....1(2n chữ số 1)
222....2 (n chữ số 2)
CMR: B= 111.....1 - 222....2 là số chính phương.
Bài 2: Tìn x,y thỏa:
a) x^2+y^2-4*x+4*y+5=0
b) x^2+y^2=x+y+8
c) x^2+x*y+y^2=x^2*y^2
CMR biểu thức: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với mọi số nguyên n
Ngọc Anh
Ta có :
n (2n - 3 ) - 2n ( n + 1 )
= 2n2 - 3n - 22 - 2n
= -5n luôn chia hết cho 5 với mọi n thuộc Z
Vậy n (2n - 3) - 2n (n + 1 ) luôn chia hết cho 5 với mọi số nguyên n
Ta có:
n(2n-3)-2n(n+1)
=2n2-3n-22-2n
=-5n luôn chia hết cho 5 với mọi n thuộc Z
Vậy n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
Ta có :
n(2n-3)-2n(n+1)
=n.2n-n.3-2n.n-2n.1
=2n^2-3n-2n^2-2n
=-5n
-5n chia hết cho 5 với mọi số nguyên n . Vì -5 chia hết cho 5
Vậy n(2n-3)-2n(n+1) chia hết cho 5
CMR biểu thức n(3n-1)-3n(n-2) luôn chia hết cho 5 với mọi số nguyên n.
1.CMR với mọi số tự nhiên n thì 3^n+4 không là số chính phương.
2.Tìm n thuộc N để n^2+2n +2 là số chính phương
Giải giúp mình.Càng nhanh càng tốt nha.