{x | x là số tự nhiên lẻ, chia hết cho 3, 1<x<15}
A= (x+2009) .(x+2010)
chứng minh A chia hết cho 2 và x là số tự nhiên?
các bạn xem trong ba cách, cách nào đúng, chính xác, điểm cao,...
cách 1:
vì x là số tự nhiên nên x sẽ có 2 trường hợp
Trường hợp 1: x là số lẻ
x+2009 là số chẵn
x+ 2010 là số lẻ
( x+2009) chia hết cho 2 . (vì ko có dấu chia hết nên mình ghi như thế nha! những cái sau cũng thế)
suy ra: (x+2009).(x+2010) chia hết cho 2
Trường hợp 2: x là số chẵn
x+2009 là số lẻ
x+ 2010 là số chẵn
(x+2010) chia hết cho 2
suy ra: (x+2009). (x+2010) chia hết cho 2
vậy A chia hết cho 2
Cách 2:
vì x là số tự nhiên nên x sẽ có 2 dạng: 2.a hoặc 2.b +1
trường hợp 1:
A= (x+2009).(x+2010)
A=(2.a+2009).(2.a+2010)
A=(2.a+2009).(2.a+2.1005)
A=(2.a+2009).2.( a+1005)
suy ra:A chia hết cho 2
trường hợp 2:
A=(x+2009).(x+2010)
A=(2.b+1+2009).(2.b+1+2010)
A=(2.b+2010).(2.b+2011)
A=(2.b+2.1005).(2.b+2011)
A=2.(b+1005).(2.b+2011)
suy ra: A chia hết cho 2
vậy A chia hết cho 2
cách 3:
A=(x+2009).(x+2010)
đây là hai số tự nhiên liên tiếp
mà tích của hai số tự nhiên liên tiếp sẽ chia hết cho 2 vì một trong hai số có một số chẵn
vậy A chia hết cho 2
c/m rằng nếu x là số tự nhiên lẻ thì A chia hết cho 16 với A=X^4+2x^3-16x^2-2x+15
\(A=x^4+2x^3-16x^2-2x+15\)
\(=\left(x^4-x^2\right)+\left(2x^3-2x\right)-\left(15x^2-15\right)\)
\(=x^2\left(x^2-1\right)+2x\left(x^2-1\right)-15\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+2x-15\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+5\right)\)
Vì x là số tự nhiên lẻ => x = 2k+1 (k thuộc N)
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+5\right)\)
\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+6\right)\)
\(=16k\left(k+1\right)\left(k-1\right)\left(k+3\right)⋮16\) (đpcm)
a. n4 - 1 chia hết cho 16 với n là số tự nhiên lẻ
b. n3 + 3n2 - n - 3 chia hết cho 48 với n là số tự nhiên lẻ
1) Chứng minh rằng :
a) Tổng hai số tự nhiên lẻ liên tiếp thì chia hết cho 4
b) Tổng ba số tự nhiên chẵn liên tiếp thì chia hết cho 6
2) Tìm số tự nhiên n, sao cho
a) n2 - 4 chia hết cho n - 3
b) n2 + 2n + 6 chia hết cho n + 4
3) Tìm số tự nhiên a: b biết :
a) ( a + 1 ) x ( 2y - 1 ) = 12
b) ( 3a - 2 ) x ( 2b - 3 ) = 1
c) a + 6 = b x ( a - 1 )
d) ( 2a + 3 ) x ( b - 1 ) = 15
e) a + 4 = b x ( a + 1 )
Mình cần gấp lắm ! Ai biết xin giúp mình ! Cảm ơn nhiều !
1. Phân tích đa thức sau thành nhân tử : \(\left(x+y\right)^3-x^3y^3\)
2. Chứng minh rằng :
a) \(\left(n^2-1\right)\) chia hết cho 8 (với n là số tự nhiên lẻ)
b)\(\left(n^6-1\right)\) chia hết cho 8 (với n là số tự nhiên lẻ)
\(\left(x+y\right)^3-x^3y^3=\left(x+y\right)^3-\left(xy\right)^3\)
=\(\left(x+y+xy\right)\left[\left(x+y\right)^2-xy\left(x+y\right)+x^2+y^2\right]\)
cho a là số tự nhiên lẻ và a không chia hết cho 3 chứng minh rằng (a-1) × (a+1) chia hết cho 24
a lẻ nên a=2k+1
(a-1)(a+1)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\)
\(=2k\left(2k+2\right)\)
\(=4k\left(k+1\right)\)
Vì k;k+1 là hai số tự nhiên liên tiếp
nên \(k\left(k+1\right)⋮2\)
=>\(4k\left(k+1\right)⋮\left(4\cdot2\right)=8\)
=>\(\left(a-1\right)\left(a+1\right)⋮8\)
Vì a không chia hết cho 3 nên a=3c+1 hoặc a=3c+2
TH1: a=3c+1
\(\left(a-1\right)\left(a+1\right)\)
\(=\left(3c+1-1\right)\left(3c+1+1\right)\)
\(=3c\left(3c+2\right)⋮3\left(1\right)\)
TH2: a=3c+2
\(\left(a-1\right)\left(a+1\right)\)
\(=\left(3c+2-1\right)\left(3c+2+1\right)\)
\(=\left(3c+3\right)\left(3c+1\right)\)
\(=3\left(c+1\right)\left(3c+1\right)⋮3\left(2\right)\)
Từ (1) và (2) suy ra \(\left(a-1\right)\left(a+1\right)⋮3\)
mà \(\left(a-1\right)\left(a+1\right)⋮8\)
và ƯCLN(3;8)=1
nên \(\left(a-1\right)\left(a+1\right)⋮\left(3\cdot8\right)=24\)
Bài 1: Tìm x,y $\in$∈ N, biết xy(x+y)=456789
Bài 2: Chứng tỏ tổng n số tự nhiên liên tiếp chia hết cho n, nếu n là số lẻ
Bài 3: Cho a,b $\in$∈ N. Chứng tỏ ab(a+b) chia hết cho 2
qqqqqqqqqqqqqq
Tìm các số tự nhiên x,y biết
X4y là số lẻ chia hết cho 9 và khi chia cho 5 dư 3
Các bạn giúp mình nha
vì x4y chia 5 dư 3 nên y=3 hoặc 8
vì x4y là số lẻ nên y=3
x+4+3 chia hết cho 9
x+7 chia hết cho 9
=>x = 2
vậy x4y = 243.
Cho a là số tự nhiên lẻ chia hết cho 3. Chứng minh rằng a2-1 chia hết cho 6