Giải phương trình nghiệm nguyên
\(x^2=y^2\left(x+y^4+2y^2\right)\)
Giải phương trình nghiệm nguyên: \(x^2y^2\left(x+y\right)+x=2+y\left(x+1\right)\).
giải phương trình nghiệm nguyên \(x^2-2y\left(x-y\right)=2\left(x+1\right)\)
chuyển vế ta có:
\(x^2-2xy+2y^2-2x-1=x^2-2x\left(y+1\right)+2y^2-1\)
tinh penta ta có:
\(penta'=\left(y+1\right)^2-\left(2y^2-1\right)=-y^2+2y+2=-\left(y+1\right)^2+3\)
để pt có nghiệm nguyên thi penta' phai lon hon hoac bang 0
co penta' nho hon hoac bang 3
từ 2 điều trên ta có: 0 nho hon hoac bang penta' <3
theo penta' ta có \(x_1=y+1-\sqrt{-\left(y+1\right)^2+3}\)
\(x_2=y+1+\sqrt{-\left(y+1\right)^2+3}\)\
mà x nguyên, y nguyên nên ta có:
\(\sqrt{-\left(y+1\right)^2+3}thuocZ\) =>\(-\left(y+1\right)^2+3\) la SCP
ma 0 nho hon hoac bang \(-\left(y+1\right)^2+3\) <3
=>\(-\left(y+1\right)^2+3\) =0 hoặc =1
, nếu trường hợp nào cho cả 2 nghiệm x,y nguyên thì chọn
PT\(\Leftrightarrow x^2-2xy+2y^2=2x+2\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2-2x=2\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(y-x\right)+1+y^2-2y+1=4\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(y-1\right)^2=4\)
Do x,y nguyên => Các hạng tử là số CP
Ta có các trường hợp
(y-1)2 | 0 | 4 |
(x-y-1)2 | 4 | 0 |
+) (y-1)2=0
=> y= 1
=> x= 0 hoặc 4
+) (y-1)2=4
=> y= -1 hoặc 3
=> (x;y)= (2;-1);(4;3)
cách của bạn đúng nhưng bạn sai dấu ở dấu <=> thứ 3
Giải phương trình nghiệm nguyên: \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
\(PT\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)\)
\(=196-3\left(5y-7\right)^2\)
Để phương trình có nghiệm thì \(\Delta\ge0\Rightarrow\left(5y-7\right)^2\le65\)
Mặt khác \(5y-7\equiv3\left(mod5\right)\)
\(\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)
do đó \(\left(5y-7\right)^2\in\left\{4,9,14,19,24,29,34,39,44,49,54,59,64\right\}\)
mà (5y-7)2 là số chính phưng nên \(\left(5y-7\right)^2\in\left\{4,9,64\right\}\)
Từ đó tính ra
\(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)
\(\Leftrightarrow5x^2+5xy+5y^2-7x-14y=0\)
\(\Leftrightarrow5x^2+x\left(5y-7\right)+5y^2-14y=0\)
\(\Rightarrow\Delta_x=\left(5y-7\right)^2-4\cdot5\cdot\left(5y^2-14y\right)\)
\(=-75y^2+210y+49\)
\(=196-3\left(25y^2-2\cdot5y\cdot7+79\right)\ge0\)
\(=196-3\left(5y-7\right)^2\ge0\)
Để phương trình có nghiệm nguyên thì \(\Delta_x\ge0\Leftrightarrow\left(5y-7\right)^2\le65\)
Nhận thấy \(5y-7\equiv3\left(mod5\right)\Rightarrow\left(5y-7\right)^2\equiv4\left(mod5\right)\)
Do đó \(\left(5y-7\right)^2\in\left\{4;9;14;19;24;29;34;39;44;49;54;59\right\}\)
Mà \(\left(5y-7\right)^2\)chinh phương nên \(\left(5y-7\right)^2\in\left\{4;9;49\right\}\)
Đến đây ta xét trường hợp là ra.
Trl :
Bạn kia làm đúng rồi nhé !
Học tốt nhé bạn @
Giải phương trình nghiệm nguyên \(\left|x^2-2xy+y^2+3x-2y-1\right|+4=2x-\left|x^2-3x+2\right|\)
Where are "thiên tài"
\(|x^2-2xy+y^2+3x-2y-1|+4=2x-|x^2-3x+2|\)
\(\Leftrightarrow2x-4=|x^2-2xy+y^2+3x-2y-1|+|x^2-3x+2|\ge0\)
\(\Leftrightarrow x\ge2\)
Với \(x\ge2\)thì ta suy ra được
\(\hept{\begin{cases}x^2-2xy+y^2+3x-2y-1=\left(x-y+1\right)^2+x-2\ge0\\x^2-3x+2=\left(x-2\right)^2+x-2\ge0\end{cases}}\)
Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có:
\(x^2-2xy+y^2+3x-2y-1+4=2x-\left(x^2-3x+2\right)\)
\(\Leftrightarrow2x^2+y^2-2xy-2x-2y+5=0\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
x 2 − 2xy + y 2 + 3x − 2y − 1| + 4 = 2x − |x 2 − 3x + 2| ⇔2x − 4 = |x 2 − 2xy + y 2 + 3x − 2y − 1| + |x 2 − 3x + 2| ≥ 0 ⇔x ≥ 2 Với x ≥ 2thì ta suy ra được x 2 − 2xy + y 2 + 3x − 2y − 1 = x − y + 1 2 + x − 2 ≥ 0 x 2 − 3x + 2 = x − 2 2 + x − 2 ≥ 0 Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có: x 2 − 2xy + y 2 + 3x − 2y − 1 + 4 = 2x − x 2 − 3x + 2 ⇔2x 2 + y 2 − 2xy − 2x − 2y + 5 = 0 ⇔ x − y + 1 2 + x − 2 2 = 0 ⇔ x = 2 y = 3
x 2 − 2xy + y 2 + 3x − 2y − 1| + 4 = 2x − |x 2 − 3x + 2| ⇔2x − 4 = |x 2 − 2xy + y 2 + 3x − 2y − 1| + |x 2 − 3x + 2| ≥ 0 ⇔x ≥ 2 Với x ≥ 2thì ta suy ra được x 2 − 2xy + y 2 + 3x − 2y − 1 = x − y + 1 2 + x − 2 ≥ 0 x 2 − 3x + 2 = x − 2 2 + x − 2 ≥ 0 Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có: x 2 − 2xy + y 2 + 3x − 2y − 1 + 4 = 2x − x 2 − 3x + 2 ⇔2x 2 + y 2 − 2xy − 2x − 2y + 5 = 0 ⇔ x − y + 1 2 + x − 2 2 = 0 ⇔ x = 2 y = 3
Giải phương trình nghiệm nguyên:\(x^3+y^3+x^2y+y^2x=4\left(x^2+xy+y^2\right)+1\)
Đoán nguồn đi mấy ông :)))
Giải phương trình nghiệm nguyên \(x^3+y^3+x^2y+y^2x=4\left(x^2+xy+y^2\right)+1\)
Đoán nguồn đi mấy ông :))
Giải phương trình nghiệm nguyên \(x^3+x^2y+xy^2+y^3=8\left(x^2+xy+y^2+1\right)\)
Giải phương trình nghiệm nguyên :
\(x^2y^2+\left(x-2\right)^2+\left(2y-2\right)^2-2xy\left(2y-4\right)=5\)
Giải phương trình nghiệm nguyên:
a, \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
b, \(x^4-2y^2=1\)
a. \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
<=> \(x^3+x^2+x+1=4y^2+4y+1\)
<=> \(\left(x+1\right)\left(x^2+1\right)=\left(2y+1\right)^2\)là một số chính phương lẻ
=> \(x+1;x^2+1\) là 2 số lẻ (1)
Chứng minh: \(\left(x+1;x^2+1\right)=1\)
Đặt: \(\left(x+1;x^2+1\right)=d\)
=> \(\hept{\begin{cases}x-1⋮d\\x^2+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x^2+1⋮d\end{cases}}}\)
=> \(\left(x^2+1\right)-\left(x^2-1\right)⋮d\)
=> \(2⋮d\)(2)
Từ (1) => d lẻ ( 3)
(2); (3) => d =1
Vậy \(\left(x+1;x^2+1\right)=1\)
Có \(\left(x+1\right)\left(x^2+1\right)\) là số chính phương
Từ 2 điều trên => \(\left(x+1\right),\left(x^2+1\right)\) là 2 số chính phương
Mặt khác \(x^2\) là số chính phương
Do đó: x = 0
Khi đó: \(4y\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Vậy phương trình có nghiệm ( x; y) là ( 0; 0) hoặc (0; -1)