Cho \(\frac{a}{b}=\frac{c}{d}\) . Chứng tỏ \(\frac{a}{b}=\frac{3a+2c}{3b+2d}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Hãy chứng tỏ rằng:
\(\frac{a}{b}=\frac{c}{d}=\frac{3a+2c}{3b+2d}\) \(\frac{a}{b}=\frac{c}{d}=\frac{-2a+7c}{-3b+7d}\)
cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng \(\frac{3a+2c}{3b+2d}=\frac{-5b+3c}{-5d+3d}\)
Cho a, b, c, d là các số thực dương. Chứng minh :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}=\frac{3a+2c}{3b+2d}\) chứng minh tỉ lệ thức sau
Cho \(\frac{a}{b} = \frac{c}{d}\) với b – d \( \ne \) 0; b + 2d \( \ne \) 0. Chứng tỏ rằng:
\(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)
Như vậy, \(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\) (đpcm)
Cho \(\frac{a}{b}=\frac{c}{d}\)Chứng minh rằng : \(\frac{a-c}{b-d}=\frac{3a+2d}{3b+2d}\)
Áp dụng tỉ lệ thức => a/b=c/d=(a-c)/(b-d) (1)
ta có : a/b=c/d
=> 3a/3b=2c/2d=(3a+2c)/(3b+2d) (2)
Từ(1)(2)=> (a-c)/(b-d)=(3a+2c)/(3b+2d) (điều phải chứng minh)
Cho \(a;b;c;d>0\)chứng minh
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
cre: dự vào đề tóan quốc tế mỹ
\(\text{Σ}\frac{a}{b+2c+3d}=\text{Σ}\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{6\left(ab+bc+cd+ad\right)}\)
\(=\frac{\left(a+b\right)^2+\left(c+d\right)^2+2\left(a+b\right)\left(c+d\right)}{6\left(ab+bc+cd+ad\right)}=\frac{a^2+c^2+b^2+d^2+2ab+2cd+2\left(a+b\right)\left(c+d\right)}{6\left(ab+bc+cd+ad\right)}\)
\(\ge\frac{4\left(ab+bc+cd+ad\right)}{6\left(ab+bc+cd+ad\right)}=\frac{2}{3}\)
Dấu = xảy ra khi a=b=c=d
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\)
\(=\frac{a^2}{ab+2ac+3ad}+\frac{b^2}{bc+2bd+3ab}+\frac{c^2}{cd+2ac+3bc}+\frac{d^2}{ad+2bd+3cd}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{4.\left(ab+ad+bc+bd+ca+cd\right)}\)\(\ge\frac{\left(a+b+c+d\right)^2}{\frac{3}{2}.\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d\)
\(VT=\frac{a^2}{ab+2ac+3ad}+\frac{b^2}{bc+2bd+3ab}+\frac{c^2}{cd+2ac+3bc}+\frac{d^2}{ad+2bd+3cd}\)
Áp dụng BĐT Svac-xơ cho 3 số dương ta được :
\(VT\ge\frac{\left(a+b+c+d\right)^2}{4ab+4ac+4ad+4bc+4bd+4cd}\)
Áp dụng BĐT phụ \(x^2+y^2\ge2xy\) ta được :
\(a^2+b^2\ge2ab;a^2+c^2\ge2ac;a^2+d^2\ge2ad\)
\(b^2+c^2\ge2bc;b^2+d^2\ge2bd;c^2+d^2\ge2cd\)
\(\Rightarrow3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)
Ta lại có : \(\left(a+b+c+d\right)^4=a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2bd+2cd\)
\(\ge\frac{8\left(ab+ac+ad+bc+bd+cd\right)}{3}\)
\(\Rightarrow VT\ge\frac{\left(a+b+c+d\right)^4}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{8\left(ab+ac+ad+bc+bd+cd\right)}{12\left(ab+ac+ad+bc+bd+cd\right)}=\frac{2}{3}\)
Dấu "=" xảy ra khi \(a=b=c=d\)
A)\(CMR:\frac{a+2c}{b+2d}\)\(=\frac{3a+c}{3b+d}\)
B)\(CMR:\frac{a-c}{a+3c}=\frac{b-d}{b+3d}\)
A)\(CMR:\frac{a+2c}{b+2d}\)\(=\frac{3a+c}{3b+d}\)
B)\(CMR:\frac{a-c}{a+3c}=\frac{b-d}{b+3d}\)