Cho \(\frac{a}{b}=\frac{3}{5}\)và \(a-b=4\). Tính \(a.b+\left|a+b\right|\)
Cho ab=1 và a+b≠0. Tính
\(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)
1/ cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng:
a) \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\frac{a.d}{c.b}=\frac{\left(a+b\right).\left(a-b\right)}{\left(c+d\right).\left(c-d\right)}\)
2/ cho a.b=c2 chứng minh: \(\frac{a}{b}=\frac{\left(2.a+3.c\right)^2}{\left(2.c\right)+\left(3.b\right)^2}\)
1) Biết a^2 + b^2 = 13 và a.b = 6. Tính |a + b|
2) Cho a, b, c thỏa mãn: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Tính giá trị của biểu thức: \(C=\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{b}{c}+\frac{c}{b}\)
3) Cho A là một số viết bởi 100 chữ số 6. Khi chia A cho 15 ta được chữ số thập phân liền sau dấu phẩy của thương là bao nhiêu?
4)Tìm bậc của đa thức \(f\left(x\right)=3.x^4.y^2+5.x^3.y^2-3.y^2.x^4+3.x^3+7\)
5) Cho \(f\left(x\right)=\left(8.x^2+x-8\right)^{2016}.\left(-3.x^3-4.x^2+x+5\right)^{2015}\)
Tính tổng các hệ số sau khi thu gọn
6) Cho \(Q\left(x\right)=a.x^4.y^3+10.x.y^2+4.y^3-2.x^4.y^3-3.x.y^2+b.x^3.y^4\)
Biết a, b là hằng số và Q có bậc là 3. Tìm a, b
hix, lm bt vio ak, mình pít kết quả hết oy, nhg mà thầy kiu trình bày ra, bạn nào giúp mình với
Cho \(A=\frac{2}{11.15}+\frac{2}{15.19}+\frac{2}{19.23}+...+\frac{2}{51.55};B=\left(-\frac{5}{3}\right).\frac{11}{2}.\left(\frac{1}{3}+1\right)\)
Tính tích A.B
Cho a,b thỏa ab=1; a+b\(\ne\) 0 Tính
\(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{1}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Cho 2 số thực a,b thỏa mãn điểu kiện \(ab=1\)và \(a+b\ne0\)
Tính giá trị của biểu thức \(A=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)\(+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(A=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{\left(ab\right)^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{\left(ab\right)^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{ab}\)
\(=\frac{1}{\left(a+b\right)^3}.\frac{a^3+b^3}{1^3}+\frac{3}{\left(a+b\right)^4}.\frac{a^2+b^2}{1^2}+\frac{6}{\left(a+b\right)^5}.\frac{a+b}{1}\)
\(=\frac{a^2-ab+b^2}{\left(a+b\right)^2}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6}{\left(a+b\right)^4}\)\(=\frac{\left(a^3+b^3\right)\left(a+b\right)+3a^2+3b^2+6}{\left(a+b\right)^4}\)
\(=\frac{a^4+a^3b+ab^3+b^4+3a^2+3b^2+6}{a^4+4a^3b+6a^2b^2+4ab^3+b^4}\)\(=\frac{a^4+a^2.1+1.b^2+b^4+3a^2+3b^2+6}{a^4+4a^2.1+6.1^2+4b^2.1+b^4}\)
\(=\frac{a^4+4a^2+4b^2+b^4+6}{a^4+4a^2+6+4b^2+b^4}=1\)
Cho 2 số thực a ,b thỏa mãn \(ab=1\)và \(a+b\ne0\)
Tính giá trị biểu thức \(A=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)\)\(+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)
cho a/b = c/d . tính \(\frac{a.b}{c.d}+\left[\left(\frac{a+b}{c+d}\right)^2:\left(\frac{a^2+b^2}{c^2+d^2}\right)\right]-\frac{a^2-b^2}{c^2-d^2}\)
Có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
=> \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)
=> \(\frac{ab}{cd}+\left[\left(\frac{a+b}{c+d}\right)^2:\left(\frac{a^2+b^2}{c^2+d^2}\right)\right]-\frac{a^2-b^2}{c^2-d^2}\)
= \(\frac{ab}{cd}+1-\frac{a^2-b^2}{c^2-d^2}\)
= \(1\)
a) \(\frac{ab+b^2}{\left(a-1\right)^2}\) b) \(\frac{1+ab^2}{\left(a-2\right)\left(b+5\right)}\) c)\(\frac{\left(a+b^2\right)\left(a-2\right)}{a.b^2\left(a-1\right)}\) d) \(\frac{a^2b+b^3}{ab-a^2}\)
a) Biểu thức trên không có nghĩa khi \(\left(a-1\right)^2=0\)\(\Leftrightarrow a=1\)
b) Khi \(\orbr{\begin{cases}a-2=0\\b+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=2\\b=-5\end{cases}}\)
c) Khi \(a=0\)hoặc \(a=1\)hoặc \(b=0\)
d) Khi \(ab-a^2=0\)\(\Leftrightarrow a\left(b-a\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=b\end{cases}}\)