CMR : A = 1001 x 1002 x 1003 x 1004 x ....... x 2016 chia hết cho tích 1 x 3 x 5 x ...... x 2015
Chứng minh: 1001 x 1002 x 1003 x ... x 2000 chia hết cho 1 x 3 x 5 x ... x 1999
Cho A = 1001 x 1002 x 1003 x ...... x 2000 và B = 1 x 3 x 5 x 7 x ..... x 1999. Chứng tỏ rằng A chia hết cho B
Giải phương trình:
x-1001/1006 + x-1003/1004 + x-1005/1002 + x-1007/1000 = 4
\(\dfrac{x-1001}{1006}+\dfrac{x-1003}{1004}+\dfrac{x-1005}{1002}+\dfrac{x-1007}{1000}=4\)
\(\Rightarrow\dfrac{x-1001}{1006}-1+\dfrac{x-1003}{1004}-1+\dfrac{x-1005}{1002}-1+\dfrac{x-1007}{1000}-1=0\)
\(\Rightarrow\dfrac{x-2007}{1006}+\dfrac{x-2007}{1004}+\dfrac{x-2007}{1002}+\dfrac{x-2007}{1000}=0\)
\(\Rightarrow\left(x-2007\right)\left(\dfrac{1}{1006}+\dfrac{1}{1004}+\dfrac{1}{1002}+\dfrac{1}{1000}\right)=0\)
Dễ thấy: \(\dfrac{1}{1000}+\dfrac{1}{1004}+\dfrac{1}{1002}+\dfrac{1}{1000}>0\Leftrightarrow x-2007=0\Leftrightarrow x=2007\)
Tìm x biết: \(\dfrac{x-1016}{1001}+\dfrac{x-13}{1002}+\dfrac{x+992}{1003}=\dfrac{x+995}{1004}+\dfrac{x-7}{1005}+1\)
\(\dfrac{x-1016}{1001}+\dfrac{x-13}{1002}+\dfrac{x+992}{1003}=\dfrac{x+995}{1004}+\dfrac{x-7}{1005}+1\)
<=>\(\dfrac{x-1016}{1001}-1+\dfrac{x-13}{1002}-2+\dfrac{x+992}{1003}-3=\dfrac{x+995}{1004}-3+\dfrac{x-7}{1005}-2\)
<=>\(\dfrac{x-2017}{1001}+\dfrac{x-2017}{1002}+\dfrac{x-2017}{1003}=\dfrac{x-2017}{1004}+\dfrac{x-2017}{1005}\)
<=>\(\left(x-2017\right)\left(\dfrac{1}{1001}+\dfrac{1}{1002}+\dfrac{1}{1003}-\dfrac{1}{1004}-\dfrac{1}{1005}\right)=0\)
vì 1/1001+1/1002+1/1003-1/1004-1/1005 khác 0 nên x-2017=0<=>x=2017
vậy..........
CMR :
1001 . 1002 . 1003 . ..... . 2016 chia hết cho 1 . 3 . 5 . .... . 2015
ĐẶT A = 1001.1002.1003. ... .2016
TÍCH CÓ MỘT SỐ THỪA SỐ CHIA HÊT CHO 3 NHƯ 1002, 1005,...
MÀ SỐ NÀO NHÂN VỚI 3 THÌ CŨNG CHIA HÊT CHO 3 ( không tin bạn cứ thử) (1)
SUY RA TÍCH TRÊN CHĂC CHẮN CHIA HÊT CHO 3 (2)
ĐẶT B = 1.3.5. ...2015
TÍCH TRÊN CŨNG CÓ THỪA SỐ 3 NÊN NÓ SẼ CHIA HẾT CHO 3 (3)
TỪ (2),(3) SUY RA A CHIA HẾT CHO B
CMR :
1001 . 1002 . 1003 ....... 2016 chia hết cho 1 . 3 . 5 . ..... . 2015
CMR :
1001 . 1002 . 1003 . ..... . 2016 chia hết cho 1 . 3 . 5 . .... . 2015
giải hương trình:\(\dfrac{x-1001}{1006}+\dfrac{x-1003}{1004}+\dfrac{x-1005}{1002}+\dfrac{x-1007}{1000}\)=4
\(\dfrac{x-1001}{1006}+\dfrac{x-1003}{1004}+\dfrac{x-1005}{1002}+\dfrac{x-1007}{1000}=4\)
\(\Leftrightarrow\dfrac{x-1001}{1006}-1+\dfrac{x-1003}{1004}-1+\dfrac{x-1005}{1002}-1+\dfrac{x-1007}{1000}-1=0\)
\(\Leftrightarrow\dfrac{x-2007}{1006}+\dfrac{x-2007}{1004}+\dfrac{x-2007}{1002}+\dfrac{x-2007}{1000}=0\)
\(\Leftrightarrow\left(x-2007\right)\left(\dfrac{1}{1006}+\dfrac{1}{1004}+\dfrac{1}{1002}+\dfrac{1}{1000}=0\right)\)
\(\Leftrightarrow x-2007=0\)
\(\Leftrightarrow x=2007\)
Tìm x,biết:
a)\(\frac{x+1}{999}+\frac{x+2}{998}=\frac{x+3}{997}+\frac{x+4}{996}\)
b)\(\frac{x+1}{1001}+\frac{x+2}{1002}=\frac{x+3}{1003}+\frac{x+4}{1004}\)
c)\(|x|-\frac{15}{2}=\frac{15}{4}\)
d)\(|\frac{3}{4}-x|+1|=\frac{3}{2}\)
.a, \(\frac{x+1}{999}+\frac{x+2}{998}=\frac{x+3}{997}+\frac{x+4}{996}\)
.\(< =>\frac{x+1}{999}+1+\frac{x+2}{998}+1=\frac{x+3}{997}+1+\frac{x+4}{996}+1\)
.\(< =>\frac{x+1}{999}+\frac{999}{999}+\frac{x+2}{998}+\frac{998}{998}=\frac{x+3}{997}+\frac{997}{997}+\frac{x+4}{996}+\frac{996}{996}\)
.\(< =>\frac{x+1+999}{999}+\frac{x+2+998}{998}=\frac{x+3+997}{997}+\frac{x+4+996}{996}\)
.\(< =>\frac{x+1000}{999}+\frac{x+1000}{998}-\frac{x+1000}{997}-\frac{x+1000}{996}=0\)
.\(< =>\left(x+1000\right)\left(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\right)=0\)
.Do \(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\ne0\)
.Suy ra \(x+1000=0\Leftrightarrow x=-1000\)
.b, \(\frac{x+1}{1001}+\frac{x+2}{1002}=\frac{x+3}{1003}+\frac{x+4}{1004}\)
.\(< =>\frac{x+1}{1001}-1+\frac{x+2}{1002}-1=\frac{x+3}{1003}-1+\frac{x+4}{1004}-1\)
.\(< =>\frac{x+1}{1001}-\frac{1001}{1001}+\frac{x+2}{1002}-\frac{1002}{1002}=\frac{x+3}{1003}-\frac{1003}{1003}+\frac{x+4}{1004}-\frac{1004}{1004}\)
.\(< =>\frac{x+1-1001}{1001}+\frac{x+2-1002}{1002}=\frac{x+3-1003}{1003}+\frac{x+4-1004}{1004}\)
.\(< =>\frac{x-1000}{1001}+\frac{x+1000}{1002}-\frac{x+1000}{1003}-\frac{x+1000}{1004}=0\)
.\(< =>\left(x-1000\right)\left(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\right)=0\)
.Do \(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\ne0\)
.Suy ra \(x-1000=0\Leftrightarrow x=1000\)
mình làm luộn 2 câu còn lại nhé ^^
.c,\(|x|-\frac{15}{2}=\frac{15}{4}\)
.\(< =>|x|=\frac{15}{4}+\frac{15}{2}=\frac{15}{4}+\frac{30}{4}=\frac{45}{4}\)
.\(< =>\orbr{\begin{cases}x=\frac{45}{4}\\x=-\frac{45}{4}\end{cases}}\)
.d,\(|\frac{3}{4}-x|+1=\frac{3}{2}\)
.\(< =>|\frac{3}{4}-x|=\frac{3}{2}-1=\frac{3}{2}-\frac{2}{2}=\frac{1}{2}\)
.\(< =>\orbr{\begin{cases}\frac{3}{4}-x=\frac{1}{2}\\\frac{3}{4}-x=-\frac{1}{2}\end{cases}< =>\orbr{\begin{cases}x=\frac{3}{4}-\frac{1}{2}=\frac{1}{4}\\x=\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\end{cases}}}\)