cho \(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)trong đó a+b+c+d khác 0 . CM: a=c
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)với a,b,c,d khác 0,a khác b , c khác d . CMR \(\frac{a}{a-b}=\frac{c}{c-d}\)
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b khác 0 . CMR c = 0
MAI MÌNH NỘP RỒI GIÚP MÌNH VỚI
cho \(\frac{a}{b}=\frac{c}{d}\) .CM \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2-b^2}{c^2-d^2}\) (b,c,d khác 0,c+d khác 0, c-d khác 0)
Dễ mà
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)(1)
Từ (1),
Ta có: \(\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}=\frac{a+b}{c+d}\cdot\frac{a-b}{c-d}\)(nhân mỗi vế với \(\frac{a+b}{c+d}\))
Vậy \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a+b\right)\left(a-b\right)}{\left(c+d\right)\left(c-d\right)}=\frac{a^2-b^2}{c^2-d^2}\)(đpcm)
cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) trong đó a + b +c +d khác 0.tính giá trị biểu thức \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
dễ mà bạn k cho mình thì mình giải cho k đi ko thì bye
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\). Trong đó a + b + c + d khác 0
Tính \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{d-a}{b+c}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)trong đó a+b+c+d khác 0. Tính giá trị biểu thức
A= \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}.\) trong đó a+b+c+d khác 0
tính \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{d+a}+\frac{2d-a}{b+c}\)
ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) => a=b=c=d
vậy \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{1}{2}x4=2\)
Theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=1.b=b\)(1)
\(b=1.c=c\)(2)
\(c=1.d=d\)(3)
\(d=1.a=a\)(4)
\(\Rightarrow a=b=c=d\)
Ta thay các số hạng b ; c ; d bằng các số hạng a thì được
\(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{d+a}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{4}{2}=2\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)Trong đó a+b+c+d khác 0
Tính GTBT:
M=\(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=>a=b=c=d
\(M=\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
\(=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)do a=b=c=d
\(=\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)
Cho 4 số a, b, c, d sao cho a+b+c+d khác 0. Biết \(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)=k
Khi đó k=.......
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
\(=\frac{3a+3b+3c+3d}{a+b+c+d}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=k\)
Th1: 3(a + b + c + d) = 0 Mà a + b + c + d khác 0 => Loại
Vậy k = 3
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\), b; c khác 0. Chứng tỏ rằng a khác b, c khác d thì ta có các tỉ lệ thức sau:
\(\frac{a}{a+b}=\frac{c}{c+d};\frac{a}{a-b}=\frac{c}{c-d};\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
nhớ là cm từng tỉ lệ thức nha