Cho các hàm số y=f(x)=2x và y=g(x)=18/x. không vẽ đồ thị hãy tính toạ độ giao điểm của 2 đồ thị
cho các hàm số y=f(x)=2x và y=g(x)=18/x. Không vẽ đồ thị của chúng hãy tính tọa độ giao điểm của 2 đồ thị
Cho 2 hàm số y = f(x) = 2x + 5 và y = g(x) = x + 3. Tính toạ độ M là giao điểm của 2 đồ thị (không vẽ đồ thị)
Cho các hàm số y = f(x) = 2x và y = g(x) = \(\frac{18}{x}\). Không vẽ đồ thị của chúng, hãy tính tọa độ giao điểm của hai đồ thị.
Phương trình hoàn độ và giao điểm của hai đồ thị hàm số trên là:
\(2x=\frac{18}{x}\left(x\ne0\right)\Leftrightarrow2x^2-18=0\)
\(\Leftrightarrow2\left(x^2-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\) (T/M)
Với x = 3 thì y = 6 ta được A = (3;6)
Với x = -3 thì y = -6 ta được B = (-3;-6)
Vậy tọa độ giao điểm của hai đồ thị hàm số trên là A = (3;6) và B = (-3;-6)
hoàn độ -> hoành độ giùm t. Đánh lanh tay quá chả để ý mà đăng luôn.:V
cho các hàm số y = f(x) = 2x và y = g(x) = \(\frac{18}{x}\). ko vẽ đồ thị của chúng e hãy tính tọa độ giao điểm của 2 đồ thị
Hoành độ giao điểm 2 đồ thị là nghiệm của phương trình \(2x=\frac{18}{x}\Rightarrow2x^2=18\Rightarrow x^2=9\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Với \(x=3\Rightarrow y=6\Rightarrow A\left(3;6\right)\)
Với \(x=-3\Rightarrow y=-6\Rightarrow B\left(-3;-6\right)\)
Vậy 2 giao điểm là \(A\left(3;6\right);B\left(-3;-6\right)\)
Cho các hàm số \(y=f\left(x\right)=2x\) và \(y=g\left(x\right)=\frac{18}{x}\). Không vẽ đồ thị của chúng, em hãy tính tọa độ giao điểm của 2 đồ thị, sau đó rút ra nhận xét về phương pháp chung để tìm tọa độ giao điểm của 2 đồ thị hàm số.
Gọi A (xo; yo) là giao điểm của hai đồ thị
A \(\in\) đồ thị hàm số y = 2x => yo = 2xo
A \(\in\) đồ thị hàm số y = 18/x => yo = 18/xo
=> 2xo = 18/xo => 2xo2 = 18 <=> x2o = 9 => xo = 3 hoặc xo = - 3
+) xo = 3 => yo = 6 => A (3;6)
+) xo = -3 => yo = - 6 => A (-3; -6)
Vậy...
* Nhận xét: Để tìm tọa độ giao điểm của hai đồ thị hàm số
- Tìm hoành độ giao điểm :Giải f(x) = g(x) => x = ....
- Thay x tìm được vào hàm số y = f(x) hoặc y = g(x) => y =...
cho các hàm số y=f(x) = 2x và y=g(x) = \(\frac{18}{x}\) . không vẽ đồ thị của chúng hãy tính tọa độ giao điểm của 2 đồ thị .
HELP ME
Bài 1: Cho hàm số y = f(x) = 2x và y = yx = 18/x. Không vẽ đồ thị của chúng, hãy tính tọa độ giao điểm của hai đồ thị
Bài 2: Cho hàm số y = -1/3 x
a, Vẽ đồ thị của hàm số
b, Trong các điểm M(1;3), N (6;2), P(9;-3). Điểm nào thuộc đồ thị hàm số
Mình cần gấp lắm ạ, mong mọi người giúp đỡ
Câu 3: Cho các hàm số \(y=2x+5\) và \(y=-x+2\)
a. Vẽ đồ thị của hai hàm số đã cho trên cùng một mặt phẳng toạ độ Oxy.
b. Dựa vào hình vẽ, xác định toạ độ giao điểm A của hai đồ thị hàm số.
c. Hai đồ thị của hai hàm số đã cho cắt trục hoành tại các điểm B và C. Tính diện tích tam giác ABC
\(b,\text{PT hoành độ giao điểm: }2x+5=-x+2\Leftrightarrow3x=-3\\ \Leftrightarrow x=-1\Leftrightarrow y=3\Leftrightarrow A\left(-1;3\right)\\ c,\text{PT 2 đt giao Ox: }\left\{{}\begin{matrix}y=0\Rightarrow x=-\dfrac{5}{2}\Rightarrow B\left(-\dfrac{5}{2};0\right)\\y=0\Rightarrow x=2\Rightarrow C\left(2;0\right)\end{matrix}\right.\\ \Rightarrow BC=OB+OC=\dfrac{5}{2}+2=\dfrac{9}{2}\\ \text{Gọi H là chân đường cao từ A tới BC}\\ \Rightarrow AH=\left|y_A\right|=3\\ \Rightarrow S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot3\cdot\dfrac{9}{2}=\dfrac{27}{4}\left(đvdt\right)\)
Cho hai hàm số : y=x^2 va y=2x+3
a) Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng toạ độ.
b) Tìm toạ độ giao điểm của hai đồ thị đó bằng phép tính.