ax2 + a + a + a + a =720
1. Viết phần khai báo cho các bài toán 1/ ax2 + bx + c = 0 (a ≠ 0); 3/ 2x2 + bx + 1 = 0 (a ≠ 0); 4/ ax2 + 2x + c = 0 (a ≠ 0)
1: double a,b,c
3: double b
4: double a,c
tìm điều kiện của a,b,c để phương trình sau vô nghiệm:
a(ax2+bx+c)2+b(ax2+bx+c)+c=x
a, Chứng tỏ rằng nếu a + b + c = 0 thì x = 1 là một nghiệm của đa thức P(x) = ax2 + bx + c
b, Chứng tỏ rằng nếu a – b + c = 0 thì x = -1 là một nghiệm của đa thức Q(x) = ax2 + bx + c
$\rm x=1\\\to ax^2+bx+c=a+b+c=0\\\to x=1\,\là \,\,no \,\pt$
Chứng tỏ rằng nếu phương trình a x 2 + b x + c = 0 có nghiệm là x 1 v à x 2 thì tam thức a x 2 + b x + c phân tích được thành nhân tử như sau:
a x 2 + b x + c = a ( x - x 1 ) ( x - x 2 )
Áp dụng : phân tích đa thức thành nhân tử.
a ) 2 x 2 - 5 x + 3 ; b ) 3 x 2 + 8 x + 2
* Chứng minh:
Phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a . x 2 + b x + c ( đ p c m ) .
* Áp dụng:
a) 2 x 2 – 5 x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
b) 3 x 2 + 8 x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ ’ = 4 2 – 2 . 3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
tìm a biết a=ax2+ax3+ax4+....+ax49+ax50=12750
Tím a biết: a+ax2+ax3+ax4+...+ax49+ax50=12750.
a + a x 2 + a x 3 + ........ + a x 50 = 12750
a x (1 + 2 + 3 + ....... + 50) = 12750
a x (50 x 51 : 2) = 12750
a x 1275 = 12750
a = 12750 : 1275
a = 10
ax(1+2+3+4+...+50)=12750
Xét (1+2+3+4+...+50)
Số số hạng là
(50-1):1+1=50(số hạng)
tổng 50 số hạng
(50+1)x50:2=1275
Vậy ta có phép tính Xx1275=12750
X=12750:1275=10.
Ok , vậy a = 10 bạn nhé .
cho phương trình ax2 + bx + c = 0 vô nghiệm ( a>0)
CMR: ax2 + bx + c > 0 với mọi x thuộc R
Vì PTVN nên Δ<0
=>f(x)=ax^2+bx+c luôn cùng dấu với a
=>f(x)>0 với mọi x
Biết đồ thị hàm số y = ax2 đi qua điểm B(2; 4).
a)Tìm hệ số a
b)Vẽ đồ thị của hàm số với a vừa tìm được.Biết đồ thị hàm số y = ax2 đi qua điểm B(2; 4).
a)Tìm hệ số a
b)Vẽ đồ thị của hàm số với a vừa tìm được.
a, y = ax^2 đi qua B(2;4)
<=> 4a = 4 <=> a = 1
b, bạn tự vẽ
a: Thay x=2 và y=4 vào hàm số, ta được:
\(a\cdot4=4\)
hay a=1
b: Thay x=2 và y=4 vào hàm số, ta được:
4a=4
hay a=1
Giới hạn của hàm số lim x → a x 2 - a x - a (với a là một hằng số và a ≥ 0) bằng
A. 0
B. a
C. 2 a
D. a