Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hà anh
Xem chi tiết
Thủy Tiên
Xem chi tiết
dương minh tuấn
31 tháng 10 2016 lúc 21:50

Theo bất đẳng thức Cauchy - Schwarz:
(x² + y² + z²)(1 + 1 + 1)
= (x² + y² + z²)(1² + 1² + 1²) ≥ (x + y + z)²
<--> (x² + y² + z²)(1² + 1² + 1²) ≥ 3² = 9
<--> 3(x² + y² + z²) ≥ 9
<--> x² + y² + z² ≥ 3
--> M ≥ 3
--> min M = 3 khi x = y = z = 1

dương minh tuấn
31 tháng 10 2016 lúc 21:51

x + y + z = 3. Tìm Max P = xy + yz + xz

Ta có: (x - y)² ≥ 0 <=> x² - 2xy + y² ≥ 0 <=> x² + y² ≥ 2xy
hay 2xy ≤ x² + y² , dấu " = " xảy ra <=> x = y
tương tự:
+) 2yz ≤ y² + z²
+) 2xz ≤ x² + z²

cộng 3 vế của 3 bđt trên
--> 2xy + 2yz + 2xz ≤ 2(x² + y² + z²)
--> xy + yz + xz ≤ x² + y² + z²
--> xy + yz + xz + 2xy + 2yz + 2xz ≤ x² + y² + z² + 2xy + 2yz + 2xz
--> 3(xy + yz + xz) ≤ (x + y + z)²
--> 3(xy + yz + xz) ≤ 3²
--> xy + yz + xz ≤ 3

Vậy MaxP = 3 ; Dấu " = " xảy ra <=> x = y = z = 1

Hoàng Vũ
Xem chi tiết
s2 Lắc Lư  s2
11 tháng 5 2017 lúc 21:05

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\frac{2x+y+z}{2}\)

cmtt => GTLN

alibaba nguyễn
12 tháng 5 2017 lúc 11:19

Tìm max:

Ta có:

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+xz}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{2x+y+z}{2}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\sqrt{2y+zx}\le\frac{2y+z+x}{2}\left(2\right)\\\sqrt{2z+xy}\le\frac{2z+x+y}{2}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(A\le\frac{2x+y+z}{2}+\frac{2y+z+x}{2}+\frac{2z+x+y}{2}=2\left(x+y+z\right)=4\)

Dấu = xảy ra khi \(x=y=z=\frac{2}{3}\)

Tìm min:

Ta có: \(\hept{\begin{cases}\sqrt{2x+yz}\ge0\\\sqrt{2y+zx}\ge0\\\sqrt{2z+xy}\ge0\end{cases}}\)

\(\Rightarrow A\ge0\)

Dấu = xảy ra khi \(\left(x,y,z\right)=\left(-2,2,2;2,-2,2;2,2,-2\right)\)

Do not need know
Xem chi tiết
New_New
5 tháng 6 2016 lúc 20:00

a, ap dung bunhiacopxki 

(1+1+1)A\(\ge\)(x+y+z)2=9

A\(\ge\)

Dau bang xay ra khi x=y=z=1

b, co Bmax ko co Bmin

hà anh
Xem chi tiết
Vương Hoàng Minh
Xem chi tiết
Trần Đức Thắng
Xem chi tiết
Trần Thị Loan
16 tháng 10 2015 lúc 21:50

+) Tìm GTNN

Đặt t = x + y + z 

=> t2 = (x + y+ z)= x+ y+ z+ 2(xy + yz + zx)  = 3 + 2(xy + yz+ zx) => xy + yz + zx = (t2 - 3)/2

Khi đó, A = t + \(\frac{t^2-3}{2}\) = \(\frac{t^2+2t-3}{2}=\frac{\left(t+1\right)^2-4}{2}\ge\frac{0-4}{2}=-2\)

=> Min A = -2 

Dấu "=" xảy ra khi t = - 1 <=> x + y + z = - 1. kết hợp x2 + y+ z= 3 chọn x = 1;y = -1; z = -1

Vậy....

 

kiss_rain_and_you
16 tháng 10 2015 lúc 21:31

tìm GTLN nè:

ab+bc+ca\(\le\)(a+b+c)^2/3

mặt khác :

(a+b+c)^2\(\le\)3(a^2+b^2+c^2)=9

=> A=<3+3=6 khi a=b=c=1

Đinh Thị Ngọc Anh
Xem chi tiết
Ngô Linh
Xem chi tiết