chứng tỏ rằng
\(\left(5^{61}+25^{31}+125^{21}\right)\) chia hết cho 31
Chứng minh rằng : \(\left(5^{61}+25^{31}+125^{21}\right)\)chia hết cho 31
\(5^{61}+25^{31}+125^{21}=5^{61}+5^{62}+5^{63}\)
\(=5^{61}\left(1+5+5^2\right)=5^{61}.31\)
Chia het cho 31
1)\(|x-\frac{2}{7}|=\frac{-1}{5}.\frac{-5}{7}\)
2)\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).....\left(\frac{1}{2008}-1\right)\left(\frac{1}{2009}-1\right)\)
3) Chứng tỏ rằng \(5^{61}+25^{31}+125^{21}\)chia hết cho 31
4)Tìm giá trị nhỏ nhất của biểu thức: \(A=|x-2011|+|x-200|\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot\cdot\cdot\left(\frac{1}{2009}-1\right)\)
\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\cdot\cdot\cdot\frac{-2008}{2009}\)
\(=\frac{\left(-1\right)\cdot\left(-2\right)\cdot\cdot\cdot\left(-2008\right)}{2\cdot3\cdot\cdot\cdot2009}\)
\(=\frac{1\cdot2\cdot\cdot\cdot2008}{2\cdot3\cdot\cdot\cdot2009}\)
\(=\frac{1}{2009}\)
1,
\(| x - \frac{2}{7} | = \frac{-1}{5}.\frac{-5}{7}\)
\(|x- \frac{2}{7}|=\frac{1}{7}\)
<=> \(x- \frac{2}{7} = \frac{1}{7} => x= \frac{3}{7} \)
Và \(x - \frac{2}{7} =\frac{-1}{7} => x= \frac{1}{7}\)
Học tốt
\(5^{61}+25^{31}+125^{21}\)
\(=5^{61}+\left(5^2\right)^{31}+\left(5^3\right)^{21}\)
\(=5^{61}\cdot5^{2\cdot31}\cdot5^{3\cdot21}\)
\(=5^{61}+5^{62}+5^{63}\)
\(=5^{61}\cdot\left(1+5+5^2\right)\)
\(=5^{61}\cdot\left(6+5^2\right)\)
\(=5^{61}\cdot\left(6+25\right)\)
\(=5^{61}\cdot31\)
Vì \(5^{61}\inℤ\)
\(\Rightarrow5^{61}\cdot31⋮31\)
\(\Rightarrow5^{61}+25^{31}+125^{21}⋮31\)
Vậy bài toán đã được chứng minh .
chứng minh 5^61 + 25^31 + 125^21 chia hết cho 3
5^61+25^31+125^21 =5^61+5^62+5^63 =5^61(1+5+5^2) =5^61.31
Không chia hết cho 3 đâu bạn, chỉ 31 thôi
Các bạn ơi, giúp mình với nhé!
Chứng tỏ rằng:
a) 561 +2531+12521 chia hét cho 31
b) 63+2*62+33 chia hết cho 35
Cảm ơn các bạn nha!
a ) \(5^{61}+25^{31}+125^{21}=5^{61}+5^{62}+5^{63}=5^{61}\left(1+5+25\right)=5^{61}.31⋮31\)(đpcm)
b ) \(6^3+2.6^2+3^3=2^3.3^3+2^3.3^2+3^3=3^2\left(8.3+8+3\right)=3^2.35⋮35\) (đpcm)
Vậy ........
Câu 5 :A= 561 + 2531 + 12521 . CMR A chia hết cho 31
\(A=5^{61}+25^{31}+125^{21}\)
\(\Rightarrow A=5^{61}+\left(5^2\right)^{31}+\left(5^3\right)^{21}\)
\(\Rightarrow A=5^{61}+5^{62}+5^{63}\)
\(\Rightarrow A=5^{61}\left(1+5+5^2\right)\)
\(\Rightarrow A=5^{61}.31⋮31\)
\(\Rightarrow A⋮31\)
Vậy \(A⋮31\)
\(A=5^{61}+25^{31}+125^{21}\)
\(A=5^{61}+\left(5^2\right)^{31}+\left(5^3\right)^{21}\)
\(A=5^{61}+5^{62}+5^{63}\)
\(A=5^{61}\left(1+5+5^2\right)\)
\(A=5^{61}\cdot31⋮31\left(đpcm\right)\)
Câu 1: Chứng minh \(5^{61}+25^{31}+125^{21}\)chia hết cho 155
Câu 2:Giá trị nhỏ nhất của biểu thức \(A=13-\left|3x-5\right|\)
561 + 2531 + 12521 = 561 + (52)31 + (53)21 = 561 + 562 + 563 = 561 + 561 . 5 + 561 . 52 = 561(1 + 5 + 52)
= 561 . 31
có: 155 = 31 . 5
=> 561 . 31 chia hết cho 31 . 5
Chứng tỏ rằng : 5 mũ 20 + 25 mũ 11 + 125 mũ 7 chia hết cho 31.
\(=5^{20}+\left(5^2\right)^{11}+\left(5^{ }^3\right)^7\)
=\(5^{^{ }20}+5^{22}+5^{21}\)
\(=5^{20}\cdot\left(1+5^2+5^1\right)\)
=\(5^{20}\cdot\left(1+25+5\right)\)
=\(5^{20}\cdot31\)
Vì 31 chia hết chó 31 nên
\(5^{20}+25^{^{ }11}+125^7\)chia hết cho 31
\(^{5^{20}+25^{11}+125^7}\)=\(1.5^{20}+25.25^{10}+\left(5^3\right)^7\)=\(1.5^{20}+25.\left(5^2\right)^{10}+5^{21}\)=\(1.5^{20}+25.5^{20}+5.5^{20}\)
=\(^{5^{20}.\left(1+25+5\right)}\)=\(5^{20}.31\)chia hết cho 31
Vậy \(5^{20}+25^{11}+125^7\)chia hết cho 31
5^20+25^11+125^7=5^20+(5^2)^11+(5^3)^7= 5^20+5^22+5^21=5^20(1+5^2+5)=5^20.31
Vậy 5^20+25^11+125^7 chia hết cho 31
giải giúp mình bài này với:
Chứng minh rằng : 661+2531+12531 chia hết cho 31
Chứng tỏ rằng: 520+ 2511+ 1257 chia hết cho 31
ta có(^ là dấu mũ):
5^20+25^11+125^7=5^20+5^22+5^21
=5^20+5^20.5^2+5^21.5
=5^20.(1+5^2+5)=5^20.(1+25+5)=5^20.31 chia hết cho 31
Nếu sai chỗ nào thì nhắc mik nhé :)
\(5^{20}+25^{11}+125^7=5^{20}+5^{2^{11}}+5^{3^7}=5^{20}+5^{22}+5^{21}=5^{20}+5^{20}.5^2+5^{20}.5=5^{20}\left(5^2+5+1\right)=5^{20}.31\)Vì \(5^{20}.31⋮31\) nên \(\left(5^{20}+25^{11}+125^7\right)⋮31\)