Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mỹ Ngọc Trần
Xem chi tiết
vu hai yen
25 tháng 8 2016 lúc 13:49

ko biết

thanhtruc
25 tháng 8 2016 lúc 13:53

bó tay

soyeon_Tiểu bàng giải
25 tháng 8 2016 lúc 13:56

Ta có:

F = (2x/x-1 - x+1/x) : (2x/x+1 - x-1/x)

F = [2x2/x.(x-1) - (x-1).(x+1)/x.(x-1)] : [2x2/(x+1).x - (x-1).(x+1)/x.(x+1)]

F = [2x2-(x-1).(x+1)/x.(x-1)] : [2x2-(x-1).(x+1)/x.(x+1)]

F = x.(x+1)/x.(x-1)

F = x+1/x-1

F = x-1/x-1 + 2/x-1

F = 1 + 2/x-1

Để F nguyên thì 2/x-1 nguyên

=> x - 1 thuộc Ư(2)

=> x - 1 thuộc {1 ; -1 ; 2 ; -2}

=> x thuộc {2 ; 0 ; 3 ; -1}

Đến đây bn chỉ cần thử từng giá trị của x để F > 0 là ra yêu cầu thứ nhất của đề bài

Đặng Nguyễn Thục Anh
Xem chi tiết
An Hoà
30 tháng 10 2016 lúc 20:24

\(\left(2x+1\right).\left(x-\frac{1}{2}\right)< 0\)

TH1 :

\(\hept{\begin{cases}2x+1< 0\\x-\frac{1}{2}>0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{-1}{2}\\x>\frac{1}{2}\end{cases}\Rightarrow}x\in\theta}\)

TH2:

\(\hept{\begin{cases}2x+1>0\\x-\frac{1}{2}< 0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{-1}{2}\\x< \frac{1}{2}\end{cases}\Rightarrow}\frac{-1}{2}< x< \frac{1}{2}}\)

Vậy \(\frac{-1}{2}< x< \frac{1}{2}\)

Huỳnh Diệu Linh
Xem chi tiết
Dương Chí Thắng
Xem chi tiết
Đặng Thu Hằng
Xem chi tiết
Nguyễn Thị Hằng
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
Xem chi tiết
shitbo
4 tháng 9 2019 lúc 10:01

\(f\left(x\right)=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow f\left(1\right)+f\left(2\right)+....+f\left(x\right)=1-\frac{1}{2^2}+\frac{1}{2^2}-....-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

\(\Leftrightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-20+\left(x+1\right)=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

Dat:\(x+1=a\Rightarrow\frac{\left(2y+1\right)a^3-20a^2-1}{a^2}=\frac{a^2-1}{a^2}\Leftrightarrow\left(2y+1\right)a^3-20a^2-1=a^2-1\)

\(\Leftrightarrow\left(2y+1\right)a^3-20a^2=a^2\Leftrightarrow\left(2ay+a\right)-20=1\left(coi:x=-1cophailanghiemko\right)\)

\(\Leftrightarrow2ay+a=21\Leftrightarrow a\left(2y+1\right)=21\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)

Hoàng Phú Minh
Xem chi tiết
Đặng Ngọc Quỳnh
26 tháng 8 2021 lúc 18:47

3. a) \(đk:x\ne1;x\ne-2\)

Ta có: \(A=\frac{3x-3+2}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)

Để A là số nguyên thì x là số nguyên và x-1 là ước của 2 . Ta có bảng:

x-11-12-2
x203-1

Lại có: \(B=\frac{2x^2+4x-3x-6+5}{x+2}=\frac{2x\left(x+2\right)-3\left(x+2\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)

Để B là số nguyên thì x là số nguyên và x+2 là ước của 5. Ta có bảng:

x+21-15-5
x-1-33-7

b) Để A và B cùng nguyên thì \(x\in\left\{-1;3\right\}\)

Khách vãng lai đã xóa
Vũ Anh Thư
Xem chi tiết
Vũ Anh Thư
18 tháng 8 2020 lúc 15:15

a) ĐKXĐ : \(x\ne0\);\(x\ne2;-2\)

 A=\(\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right).\left(\frac{2}{x}-1\right)\)

       =\(\left(\frac{1}{x-2}+\frac{2x}{x^2-4}+\frac{1}{x+2}\right).\left(\frac{2}{x}-\frac{x}{x}\right)\)

       =\(\frac{x+2+2x+x-2}{\left(x+2\right)\left(x-2\right)}.\frac{2-x}{x}\)

       =\(\frac{4x}{\left(x+2\right)\left(x-2\right)}.\frac{-\left(x-2\right)}{x}\)

       =  \(\frac{-4}{x+2}\)

b) Ta có : \(2x^2+x=0\)

        \(\Leftrightarrow x\left(2x+1\right)=0\)

        \(\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=\frac{-1}{2}\end{cases}}\left(tm\right)\)

Để A = -1/2 thì 

\(\Leftrightarrow\frac{-4}{x+2}=\frac{-1}{2}\)

\(\Leftrightarrow-\left(x+2\right)=-8\)

\(\Leftrightarrow x+2=8\)

\(\Leftrightarrow x=6\)

c) Để A =0,5 thì 

\(\frac{-4}{x+2}=0,5\)

\(\Leftrightarrow-8=x+2\)

\(\Leftrightarrow x=-10\)

d) Để A \(\inℤ\)thì

\(-4⋮x+2\)

\(\Leftrightarrow x+2\inƯ\left(-4\right)\)

\(\Leftrightarrow x+2\in\left\{1;2;4;-1;-2;-4\right\}\)

Lập bảng giá trị 

     x+2-11-22-44
              x-3-1-40-62

Mà \(x\ne0\)và \(x\ne2;-2\)

\(\Rightarrow x\in\left\{-1;-3;-4;-6\right\}\)

Khách vãng lai đã xóa