Tìm số tự nhiên a biết rằng khi chia 100 cho a thì dư 10 và chia 140 cho a thì dư 20, a < 50
tìm số tự nhiên A, khi chia 100 cho A thì dư 10 và 140 cho A thì dư 20
Tìm các số tự nhiên a, biết rằng:
a) Khi chia các số 100, 65 và 150 cho a thì các số dư lần lượt là 4,5,6.
b) Khi chia số 156 cho a dư 122 và chia số 280 cho a dư 10.
a) Tìm số tự nhiên a biết rằng khi chia 37 cho a thì dư 2 và khi chia cho 58 cho a thì dư 2
b) Tìm số tự nhiên b biết rằng khi chia cho 326 cho b dư 11 và khi chia cho 553 cho b thì dư 13
1. Chứng tỏ rằng:
a. 105 + 35 chia hết cho 9 và cho 5
b. 105 + 98 chia hết cho 2 và cho 9
c. 102012 + 8 chia hết cho 3 và cho 9
d. 11...1 (27 chữ số 1) chia hết cho 27
2. Một số tự nhiên khi chia cho 4, cho 5, cho 6 đều dư 1. Tìm số đó biết rằng số đó chia hết cho 7 và nhỏ hơn 400.
3. Một số tự nhiên a khi chia hết cho 4 thì dư 3, chia cho 5 thì dư 4, chia cho 6 thì dư 5. Tìm số a, biết rằng 200 _< a _< 400.
4. Tìm số tự nhiên nhỏ nhất khi chia cho 15, 20, 25 được số dư lần lượt là 5, 10, 15.
Tìm số tự nhiên a biết rằng khi chia số 111 cho a thì dư 15 còn khi chia cho 180 thì dư 20.
Vì 111 chia a dư 15; 180 chia a dư 20
nên 111 - 15 chia hết cho a; 180 - 20 chia hết cho a
=> 96 chia hết cho a; 160 chia hết cho a
=> a thuộc ƯC(96;160)
Mà ƯCLN(96;160) = 32
=> a thuộc Ư(32)
Mà a > 20 (vì số chia > số dư) => a = 32
Tìm số dư khi chia số tự nhiên a cho 36, biết rằng a chia cho 4 thì dư 3 và a chia cho 9 thì dư 5.
Gọi x và y lần lượt là thương của các phép chia a cho 4 và chia a cho 9. (b,c là số tự nhiên)
Ta có: a = 4x + 3 => 27a = 108x + 81 (1)
a = 9y + 5 => 28a = 252y + 140 (2) (Cùng nhân với 28)
Lấy (2) trừ (1) ta được: 28a - 27a = 36.(7c - 3b) + 59
\(\Leftrightarrow\) a = 36. (7c - 3b + 1) + 23
Vậy a chia cho 36 dư 23.
- Ta có : a chia 4 dư 3 `=> a=4k+3 (k in NN)`
- Ta lại có : a chia 9 dư 5 `=> a-5vdots9`
`=> 4k+3-5vdots9`
`=> 4k-2vdots9`
`=> 4k-2-18 vdots9`
`=> 4k-20vdots9`
`=> 4(k-5)vdots9`
mà (4;5)=1
`=> k-5vdots9`
`=> k-5=9m (m in NN)`
`=> k=9m+5`
- Thay `k=9m+5` vào biểu thức `a=4k+3` ta có :
`a=4.(9m+5)+3`
`-> a=36m+20+3`
`-> a=36m+23`
- Vậy a chia 36 dư 23
a chia 4 dư 3 có nghĩa là thêm 1 hoặc 5 hay 9 ; 13 ; 17 ; ... sẽ chia hết cho 4
a chia 9 dư 5 có nghĩa thêm 4 hoặc 13 ; hoặc 22 ; ... cho a thì nó chia hết cho 9
Xét các chữ số có thể thêm cho a , ta thấy thêm 13 vừa chia hết cho 4 vừa chia hết cho 9 , suy ra a + 13 chia hết cho 36
Vậy a : 36 sẽ dư :
36 - 13 = 23
1. một số tự nhiên biết khi chia cho 4 ; 5 ; 6 đều dư 1 .Tìm số đó biết rằng số đó chia hết cho 7 và nhỏ hơn 400
2. Một số tự nhiên a khi chia cho 4 thì dư 3 ; chia cho 5 thì dư 4 ; chia cho thì dư 5 . Tìm số tự nhiên a biết rằng 200 nhỏ hơn hoặc bằng a và a nhỏ hơn hoặc bằng 400
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
2. Ta thấy \(a+1\)là BC của (4;5;6) và 201 < a + 1 < 401
=> BCNN (4,5,6) = 60 .
BC (4,5,6) = {0 ; 60 ; 120 ; 180 ; 240 ; 300 ; 360 ....}
=> a + 1 = 240 ; a + 1 = 300 hoặc a + 1 = 360 => a = {239 ; 299 ; 359}
Vậy ....
tìm số tự nhiên a lớn nhất biết rằng khi chia 350 cho a thì dư 14,còn khi chia 220 cho a thì dư 10
vị 350 : a thí dụ 14 nên (350-24) chia hết cho a suy ra 350-14=336 chia het cho a
vi 220 : a thì du 10 nen (220-10) chia het cho a suy ra 220-10 =210 chia het cho a
suy ra a thuoc UCLN (336;210)
ta co: 336=2^4.3.7
210=2.3.5.7
vay UCLN(336;210)=2.3.7=42
vậy a = 42
Tìm số tự nhiên a lớn nhất, biết rằng khi chia 350 cho a thì dư 14, còn khi chia 220 cho a thì dư 10
Vì 350:a dư 14;220:a dư 10 => 336;210 chia hết cho a
Mà a là số tự nhiên lớn nhất => a thuộc ƯCLN(336;210)
Ta có: 210=2.3.5.7
336=24.3.7
=> (336;210)= 2.3.7=42
Vậy a=42