Cho a b c là các số nguyên
chứng minh a^3+b^3+c^3 chia hết 3 khi và chỉ khi a+b+c chia hết cho 3
Cho a, b, c là các số nguyên. Chứng minh rằng: \(a^3+b^3+c^3\)chia hết cho 3 khi và chỉ khi a+b+c chia hết cho 3
a3+b3+c3=(a+b+c)(a2+b2+c2−ab−bc−ac)+3abc
=(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc
=(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc
*Nếu a+b+c⋮3⇒a3+b3+c3⋮3
*Nếu a3+b3+c3⋮3⇒(a+b+c)[(a+b+c)2−3(ab+bc+ca)]⋮3⇒a+b+c⋮3
làm như vậy nha, mk xin lỗi , ko bt cách viết số mũ nha, k nha
Xét \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right).\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right).\left[a^2+2ab+b^2-ac-bc+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
- Nếu \(a+b+c⋮3\)\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)⋮3\)
Mà 3abc chia hết cho 3 \(\Rightarrow a^3+b^3+c^3⋮3\)
- Nếu \(a^3+b^3+c^3⋮3\)mà \(3abc⋮3\Rightarrow a^3+b^3+c^3-3abc⋮3\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)⋮3\Rightarrow a+b+c⋮3\)
Chúc bạn học tốt.
Nhanh hơn là:
a3-a=a(a-1)(a+1) chia hết cho 3
CMTT: b3-b chia hết cho 3
cho a, b là các số nguyên. chứng minh rằng a^3+b^3 chia hết cho 3 khi và chỉ khi a +b chia hết cho 3
Ta có: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
mà \(a^3+b^3⋮3\)
và \(3ab\left(a+b\right)⋮3\)
nên \(a+b⋮3\)
Giúp mình với!
Cho a, b là các số nguyên. chứng minh rằng a^3 + b^3 chia hết cho 3 khi và chỉ khi a + b chia hết cho 3.
Xét hiệu a3 + b3 - ( a + b ) ta có :
a3 + b3 - ( a + b ) = a3 + b3 - a - b = ( a3 - a ) + ( b3 - b ) = a( a2 - 1 ) + b( b2 - 1 ) = a( a - 1 )( a + 1 ) + b( b - 1 )( b + 1 )
Vì a,b nguyên nên a , a - 1 , a + 1 và b , b - 1 , b + 1 là 3 số nguyên liên tiếp
=> a( a - 1 )( a + 1 ) ⋮ 3 và b( b - 1 )( b + 1 ) ⋮ 3
=> a( a - 1 )( a + 1 ) + b( b - 1 )( b + 1 ) ⋮ 3 hay a3 + b3 - ( a + b ) ⋮ 3
mà a + b ⋮ 3 => a3 + b3 ⋮ 3 ( đpcm )
Cho a,b,c là các số nguyên. CMR: a) a mũ 3 -a chia hết cho 6
b) a mũ 3+b mũ 3+c mũ 3 chia hết cho 6 khi và chỉ khi a+b+c chia hết cho 6
Mình cần gấp,mình đang học đến bài phân tích đa thức thành nt
a: \(a^3-a=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
a^3-a =(a-1)a(a+1)
chứng minh rằng a+b+c chia hết cho 6 khi và chỉ khi a^3+b^3+c^3 chia hết cho 6
Thiếu điều kiện a,b,c thuộc Z
Ta có: \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp nên (a-1)a(a+1) chia hết cho 6
CM tương tự ta cũng có: \(b^3-b⋮6;c^3-c⋮6\)
\(\Rightarrow\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)
-Nếu \(a^3+b^3+c^3⋮6\Rightarrow a+b+c⋮6\)
-Nếu \(a+b+c⋮6\Rightarrow a^3+b^3+c^3⋮6\)
=>đpcm
cho a,b,c là các số nguyên và a^3+b^3+c^3 chia hết cho 7 chứng minh abc chia hết cho 7
1) Cho A=xy(x+y) + yz(y+z) + zx(z+x) +2xyz với x,y,z là các số nguyên lẻ.
Chứng minh A chia hết cho 8
2) Cho A = a+b+c và B = a3 + (b+2020)3 + (c+2021)3 với a,b,c là các số nguyên. Chứng minh A chia hết cho 3 khi và chỉ khi B chia hết cho 3
3) Cho các số thực x,y,z thảo mãn \(0\le x,y,z\le1\). Chứng minh rằng :
\(\frac{x}{1+x+yz}+\frac{y}{1+y+xz}+\frac{z}{1+z+xy}\le\frac{3}{x+y+z}\)
Với các số nguyên a,b. Đặt P=a+b, \(Q=a^3+b^3\). Chứng minh P chia hết 6 khi và chỉ khi Q chia hết cho 6
\(Q=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
3ab(a+b) chia hết cho 6 vs mọi a,b nên muốn Q chia hết cho 6 <=> a+b chia hết cho 6
a)cho a, b là các số nguyên, chứng minh rằng nếu a chia cho 13 dư 2 và b chia cho 13 dư 3 thì a^2 + b^2 chia hết cho 13
b) Cho a,b là các số nguyên . Chứng minh rằng nếu a chia cho 19 dư 3 , b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
c) chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3