a: \(a^3-a=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
a: \(a^3-a=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
Bài 3 : CMR nếu tử số hoặc mẫu của phân số
\(p=\frac{a^2+2a+15}{a^2-10a-3}\) chia hết cho 6 thì phân số đó rút gọn được cho 6
Bài 4 : Cho a,b,c là các số nguyên . CMR a^3+b^3 +c^3 chia hết cho 6 khi và chỉ khi a+b+c chia hết cho 6
Bài 5 : a, CMR 19^2015+19^2016 chia hết cho 20
b, 7.5^2n+12.6^n chia hết cho 19
Xác định a để đa thức: x mũ 3 + x mũ 2 + a - x chia hết cho (x + 1)mũ 2
Mình thực sự quá bí rồi!
b1: cmr nếu x+y+z=-3 thì (x+1)^3+(y+1)^3+(z+1)^3= 3(x+1)(y+1)(z+1)
b2: cho A+ (a^2+b^2-c^2)^2 -4a^2b^2
a) phân tích A thành nhân tử
b) cm nếu a,b,c là số đo độ dài các cạnh của 1 tam giác thì A<0
b3: cho đa thức M=(a+b)(b+c)(c+a)+abc
a/ phân tích M thành nhân tử
b/ cm nếu a,b,c thuộc z và a+b+c chia hết cho 6 thì (M-3abc) chia hết cho 6
b4: n thuộc z. cm n^3(n^2-7)^2 _ 36n chia hết cho 105
b5: xác định a,b để đa thức x^4- 3x^3+3x^2+ ax+b chia hết cho đa thức x^2-3x+4.
CÁC BẠN GIÚP MÌNH VỚI. CHIỀU PHẢI NỘP BÀI RỒI. HUHUHU :((((
CMR A= 2 mũ 1 + 2 mũ 2 + 2 mũ 3 +........+2 mũ 2020 ko chia hết cho 7
hộ mình với
bài 1 : tìm a và b để cho đa thức A chia hết cho đa thức B khi:
A=4x ³+15x ²+24x+3+a và B=x ²+4x+7
A=x mũ 4-9x ³+21x ²+ax+b vả B=x ²-3x+2
bài 7 : cho biểu thức A=(a^2012+b^2012+c^2012)-(a^2008+b^2008+c^2008) với a,b,c là các số nguyên dương . CM : A chia hết cho 30
bài 8 : Tìm các số thực a,b sao cho đa thức : f(x)=4x^4-11x^3-2ax^2+5bx-6 chia hết hết cho đa thức x^2-2x-3
bài 1:thực hiện phép tính:
a)(2x mũ 4-x mũ 3+5x-6x mũ 2-1):(1-2x)
b)(x-2)(x mũ 2-2x+4)
bài 2:phân tích đa thức thành nhân từ:
a)5x mũ 2-10xy+5y mũ 2
b)x mũ 2-4x+4-y mũ 2
c)3x mũ 2-2x-5
giải giùm mình vs nhé các bạn, hiện tại mình đang rấp gấp
Cho a b c là các số nguyên
chứng minh a^3+b^3+c^3 chia hết 3 khi và chỉ khi a+b+c chia hết cho 3
Giúp mình với!
Cho a, b là các số nguyên. chứng minh rằng a^3 + b^3 chia hết cho 3 khi và chỉ khi a + b chia hết cho 3.