một số tự nhiên nhỏ hơn bình phương của nó là 20 đơn vị . tìm số TN đó
Biết bình phương của một số tự nhiên đó lớn hơn số liền sau của nó 5 đơn vị. Tìm một số tự nhiên đó.
Bài làm :
Gọi số đó là x ( x ∈ N )
Ta có :
x2 - (x+1) = 5
<=> x2 - x - 6 = 0
Giải phương trình trên ; ta tìm được :
+ x = 3 ( Thỏa mãn )
+ x= -2 ( Loại )
Vậy số cần tìm là 3
Tìm một số nhỏ hơn 200 có chữ số hàng đơn vị khác 1,4 và 6. Biết rằng: Bình phương của số tự nhiên đó là một số có năm chữ số 1,2,6,7,9
Tìm số tự nhiên có hai chữ số biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 và số đó lớn hơn tổng các bình phương các chữ số của nó là 1.
Gọi số cần tìm là ab (a,b là chữ số ;a khác 0)
Theo đề bài a - b = 2 => a = b + 2
và ab - a2 - b2 = 1
=> 10a + b - (b + 2)2 - b2 = 1
=> 10b + 20 + b - b2 + 4b + 4 - b2 = 1
=> 15b + 24 - 2b2 = 1
=> b.(15 - 2b) = -23
=> b \(\in\) Ư(-23) = {-23; -1; 1; 23}
- Nếu b = -23 thì 15 - 2b = 61 (loại)
- Nếu b = -1 thì 15 - 2b = 17 (loại)
- Nếu b = 1 thì 15 - 2b = 13 (loại)
- Nếu b = 23 thì 15 - 2b = -31 (loại)
Vậy không tìm được số thỏa mãn đề bài
Gọi chữ số hàng đơn vị là a thì chữ số hàng chục là a + 2
Ta có số (a+2)a
Theo bài cho ta có:
=> (a+2)a = a2 + (a+2)2 + 1
=> 10(a+2) + a = a2 + a2 + 4a + 5
=> 11a + 20 = 2a2 + 4a + 5
=> 2a2 -7a+ 5 = 0
=> 2a2 - 2a - 5a + 5 = 0
=> 2a(a - 1) - 5(a - 1) = 0
=> (2a - 5)(a - 1) = 0
=> a - 1 = 0 hoặc 2a - 5 = 0
=> a = 1 (thỏa mãn) hoặc a = 5/2 (Loại)
Vậy số cần tìm là 31
Tìm số tự nhiên có hai chữ số biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 và số đó lớn hơn tổng các bình phương các chữ số của nó là 1.
Tìm số tự nhiên có hai chữ số biết rằng chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 và số đó lớn hơn tổng các bình phương các chữ số của nó là 1.
Giai pt này bằng pp thế\(\hept{\begin{cases}a-b=2\\10a+b-\left(a^2+b^2\right)=1\end{cases}}\)
Ta sẽ có kết quả số cần tìm là 75
tìm một số tự nhiên có hai chữ số biết rằng số đó có chữ số hàng đơn vị kém chữ số hàng chục là 7 đơn vị đồng thời số đó bằng bình phương của tổng hai chữ số của nó
tìm một số tự nhiên có hai chữ số biết rằng số đó có chữ số hàng đơn vị kém chữ số hàng chục là 7 đơn vị,đồng thời số đó bằng bình phương của tổng hai chữ số của nó
Gọi số cần tìm là ab
Theo đề, ta có: a-b=7 và 10a+b=(a+b)^2
=>a=7+b và 10(b+7)+b=(2b+7)^2
=>4b^2+28b+49-11b-70=0 và a=b+7
=>b=1 và a=8
tìm một số tự nhiên có hai chữ số biết rằng số đó có chữ số hàng đơn vị kém chữ số hàng chục là 7 đơn vị,đồng thời số đó bằng bình phương của tổng hai chữ số của nó
Gọi số tự nhiên cần tìm là \(\overline{ab}\left(a,b\in N;a\ne0\right)\)
Ta có \(b=a-7\)
Mặt khác: \(\overline{ab}=\left(a+b\right)^2\Rightarrow10a+b=\left(a+a-7\right)^2\)
\(\Rightarrow11a-7=\left(2a-7\right)^2\Rightarrow11a-7=4a^2-28a+49\)
\(\Rightarrow4a^2-39a+56=0\Rightarrow\left[{}\begin{matrix}a=1,75\left(L\right)\\a=8\left(TM\right)\end{matrix}\right.\)
Vậy số cần tìm là 81.
Tìm hai số tự nhiên lẻ liên tiếp, biết bình phương của sô' lớn, lớn hơn bình phương của số nhỏ là 80 đơn vị.
Gợi ý: Hai số lẻ liên tiếp là 2x + 1; 2x + 3 hoặc 2x – 1; 2x + 1. Kết quả: 19; 21.