Chứng minh : 51/2 x 52/2 x 53/2 x.......x 100/2 = 1 x 3 x 5 x 7 x.......x 99
2/3*x-(1/2-3/4+5/6-7/8+...+197/198-199/200)=1/51+1/52+1/53+...+1/99+1/100
Tìm x
viết có chắc chữ giải mà cũng đúng thật vô lý
So sánh
C = 1 x 3 x 5 x ... x 99
D = \(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}\)
(1 x 3 x 5 x...x 99) x (2 x 2 x 2 x ... x 2)
51 x 52 x 53 x...x 100
Biết (2 x 2 x 2 x...x 2) có 52 thừa số
GIÚP MIK VỚI!!!
\(\Rightarrow=\frac{51\cdot52\cdot53\cdot...\cdot100\cdot\left(1\cdot2\cdot3\cdot...\cdot50\right)\cdot2\cdot2\cdot2\cdot....\cdot2}{51\cdot52\cdot53\cdot...\cdot100}\)
rút gọn còn lại:\(\frac{1\cdot2\cdot3\cdot...\cdot50\left(2\cdot2\cdot2\cdot..\cdot2\right)}{1}\)
\(=1\cdot2\cdot3\cdot....\cdot50\left(2\cdot2\cdot2\cdot2\cdot...\cdot2\right)\)(52 số 2)
ok!
xim lỗi nhầm bài tương tự,cho mình giải lại
\(A=\frac{\left(1\cdot3\cdot\cdot5\cdot....\cdot99\right)\left(2\cdot2\cdot2\cdot2\cdot2...\cdot2\cdot2\right)}{51\cdot52\cdot53\cdot...\cdot100}\)52 SỐ 2
\(=\frac{\left(1\cdot2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot2\cdot2\cdot..\cdot2\right)}{2\cdot4\cdot6\cdot...\cdot100\left(51\cdot52\cdot53\cdot...\cdot100\right)}\)(52 SỐ 2)
\(=\frac{\left(1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot100\right)\left(2\cdot2\cdot2\cdot...\cdot2\right)}{\left(1\cdot2\right)\left(2\cdot2\right)\left(3\cdot2\right)\cdot...\cdot\left(50\cdot2\right)\left(51\cdot52\cdot53\cdot...\cdot100\right)}\)(52 SỐ 2)
\(=\frac{\left(1\cdot2\cdot3\cdot4\cdot5\cdot..\cdot100\right)\left(2\cdot2\cdot2\cdot2\cdot....\cdot2\right)}{1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot100\left(2\cdot2\cdot2\cdot2\cdot...\cdot2\right)}\)(TỬ CÓ 52 SỐ 2,MÃU CÓ 50 SỐ)
\(=4\)
Chứng minh rằng:
1x3x5x7x...x99=\(\frac{51}{2}x\frac{52}{2}x\frac{53}{2}x...x\frac{100}{2}\)
giải phương trình:a)x-51/9+x-52/8=x-53/7+x-54/6;b)x-2/x+2-3/x-2=x-14/x^2-4
a: \(\Leftrightarrow\dfrac{x-51}{9}-1+\dfrac{x-52}{8}-1=\dfrac{x-53}{7}-1+\dfrac{x-54}{6}-1\)
=>x-60=0
hay x=60
b: \(\Leftrightarrow\left(x-2\right)^2-3\left(x+2\right)=x-14\)
\(\Leftrightarrow x^2-4x+4-3x-6-x+14=0\)
\(\Leftrightarrow x^2-8x+12=0\)
=>(x-2)(x-6)=0
=>x=2(loại) hoặc x=6(nhận)
Tính : ( 1/ 1 x 2 + 1/ 3 x 4 + ... + 1/ 99 x 100 ) - ( 1/51 + 1/52 + 1/100 )
Đặt \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(\Rightarrow A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\Rightarrow A-\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)=0\)
\(\Rightarrow\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)-\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)=0\)
Chứng minh rằng:
\(\frac{51}{2}\)x \(\frac{52}{2}\)x ...x \(\frac{100}{2}\)=1 x 3 x 5 x...x 99
MÍ BN GIẢI CHI TIẾT GIÚP MIK NHA !!!! MIK TẶNG 2 LIKE CHO BN NÀO NHANH, ĐÚNG VÀ CHI TIẾT NHẤT !!!
Ta có 51/2.52/2...100/2
= 1.2.3....100/1.2...50.2.2...2 (nhân cả tử và mẫu với 1.2.3...50)
= 1.2.3...100/(1.2)(2.2)(3.2)...(50.2)
= 1.2.3...100/2.4.6...100
= 1.3.5...99 => đpcm nhớ giữ lời hứa đấy
a, Tìm STN x, biết: 2+4+6+...+2x=210
b, Cho A= 1x3x5x7x...x99
B=51/2 x 52/2 x 53/2 x...x 100/2
Chứng tỏ A=B ?
a, 2 + 4 + 6 +...+ 2x = 210
=> 2(1 + 2 + 3 +...+ x) = 210
=> \(\frac{2x\left(x+1\right)}{2}=210\)
=> x(x + 1) = 210
=> x(x + 1) = 14.15
=> x = 14
b, Ta có: \(B=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}....\frac{100}{2}=\frac{51.52.53....100}{2^{50}}\)
\(=\frac{\left(51.52.53....100\right)\left(1.2.3.....50\right)}{2^{50}\left(1.2.3.....50\right)}\)
\(=\frac{1.2.3.....100}{\left(2.1\right)\left(2.2\right)\left(2.3\right)....\left(2.50\right)}\)
\(=\frac{\left(1.3.5....99\right)\left(2.4.6....100\right)}{2.4.6.....100}\)
\(=1.3.5.....99=B\)
Vậy A = B
`(2/1.2 + 2/3.4 + ... + 2/99.100) . (x^2 +x+1945)/2 > 1975 . (1/51 + 1/52 + ... + 1/99 + 1/100)`
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
\(=\left(1-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{99}-\dfrac{1}{100}\right)\)
=\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(\left(\dfrac{2}{1\cdot2}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\right)\cdot\dfrac{x^2+x+1945}{2}>1975\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\)=>\(2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\cdot\dfrac{x^2+x+1945}{2}>1975\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\)
=>\(x^2+x+1945>1975\)
=>\(x^2+x-30>0\)
=>(x+6)(x-5)>0
TH1: \(\left\{{}\begin{matrix}x+6>0\\x-5>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>-6\\x>5\end{matrix}\right.\)
=>x>5
TH2: \(\left\{{}\begin{matrix}x+6< 0\\x-5< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -6\\x< 5\end{matrix}\right.\)
=>x<-6