A=1+2+2^2+2^3+.....+2^2016
chung minh rang A chia het cho 3
chung minh rang 11^n+2+12^2n+1 chia het cho 133
chung minh rang A=(17^n+1)(17^n+2)chia het cho 3 voi moi n thuoc N
cho (2a+7b) chia het cho 3 ( a b thuoc N). chung to (4a+2b) chia het cho 3
1.chung minh rang
A=2+2^2+2^3+...+2^30 chia het cho 7
2.chung minh rang neu p la so nguyen to lon hon 3 thi p^2-1chia het cho 24
giai nhanh ho minh nhe!
A=2+22+23+24+....+230
=(2+22+23)+(24+25+26)+...+(228+229+230)
=1(2+22+23)+23(2+22+23)+...+227(2+22+23)
=1.7+23.7+25.7+...+227.7
=7(1+23+25+...+227)
vì 7:7-->A:7
\(A=2+2^2+2^3+2^4+...+2^{29}+2^{30}\)
\(=\left(2^{ }+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)
\(=2.\left(1+2+2^2\right)+2^{^{ }4}.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{28}.7\)
\(=7.\left(2+2^4+...+2^{28}\right)\)
\(\Rightarrow A⋮7\)
a,A=1/1^2+1/2^2+1/3^2+1/4^2+...+1/50^2.chung minh rang a<2
b;2^1+2^2+2^3+...+2^30.chung minh rang B chia het cho21
a) chung minh rang ( a - b ) ( a + b ) =\(a^2-b^2\)
b ) ap dung chia cho b la so nguyen to lon hon 3 . Chung minh rang
1) \(P^2-1\)chia het cho 24
2 ) \(P^4-1\)chia het cho 48
câu a là 1 hàng đẳng thức bạn nhé
Vế trái = (a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
b) p^2-1=(p-1)(p+1)
Do p>3 và p là SNT => p ko chia hết cho 3 => p chia 3 dư 1 hoặc 2
+ Nếu p:3 dư 1 thì p-1 chia hết cho 3
+ Nếu p:3 dư 2 thì p+1 chia hết cho 3
=> p^2-1 chia hết cho 3.
Do p>3, p NT=> p lẻ=> p=2k+1
Thay vào đc p^2-1=2k(2k+2)
=4k(k+1)
Do k và k+1 là 2 số tự nhiên liên tiếp => chia hết cho 2
=> 4k(k+1) chia hết cho 8=> p^2-1 chia hết cho 8
Tóm lại p^2-1 chia hết cho 24 do (3,8)=1
2) p^4-1=(p^2-1)(p^2+1)
Theo câu a thì p^2-1 chia hết cho 24
Do p lẻ (p là SNT >3)
=> p^2 cx lẻ => p^2+1 chẵn do 1 lẻ
=> p^2+1 chia hết cho 2
=> p^4-1 chia hết cho 48 (đpcm).
chung minh rang a la 1 so le khong chia het cho 3 thi a2 -1 chia het cho 6
cho A= 4 + 2^2 +2^3 +2^4+ ...+2^2014 Chung minh rang A chia het cho 1024
Cho A=2+2^2+2^3+...+2^60
Chung minh rang A chia het cho 6
A=2+2^2+2^3+...+2^60
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
A=6+2^2.(2+2^2)+...+2^58.(2+2^2)
A=6+2^2.6+...+2^58.6
A=6.(1+2^2+...+26^58)
Vì 6\(⋮\)6
=>6.(1+2^2+...+2^58) \(⋮\)6
=>A\(⋮\)6
Vậy A chia hết cho 6
a=2+2^2+2^3+...+2^2004
chung minh rang ;a chia het cho 3,7,15,31
cho so tu nhien n chung minh rang:
a, n(n+1)(n+2)chia het cho ca 2 va 3
b,n(n+1)(2n+1)chia het cho ca va 3
Anh làm phần a,b em tự mày mò nhé.
a)Ta có:
n và n+1 là 2 số tự nhiên liên tiếp khác tính chẵn lẻ nên 1 số là chẵn:
=>(n+1)n(n+2) chia hết cho 2.
n;n+1;n+2 là 3 só tự nhiên liên tiếp nên 1 số chia hết cho 3(chứng minh bằng dùng 3k;3k+1;3k+2)
=>n(n+1)(n+2) chia hết cho 3.
Vậy ....
Anh làm phần a,b em tự mày mò nhé.
a)Ta có:
n và n+1 là 2 số tự nhiên liên tiếp khác tính chẵn lẻ nên 1 số là chẵn:
=>(n+1)n(n+2) chia hết cho 2.
n;n+1;n+2 là 3 só tự nhiên liên tiếp nên 1 số chia hết cho 3(chứng minh bằng dùng 3k;3k+1;3k+2)
=>n(n+1)(n+2) chia hết cho 3.
Vậy ....
Anh làm phần a,b em tự mày mò nhé.
a)Ta có:
n và n+1 là 2 số tự nhiên liên tiếp khác tính chẵn lẻ nên 1 số là chẵn:
=>(n+1)n(n+2) chia hết cho 2.
n;n+1;n+2 là 3 só tự nhiên liên tiếp nên 1 số chia hết cho 3(chứng minh bằng dùng 3k;3k+1;3k+2)
=>n(n+1)(n+2) chia hết cho 3.
Vậy ....