Cho tam giác ABC, góc A nhọn.
Chứng minh
\(BC^2=AB^2+AC^2-2\times AB\times AC\cos A\)
Cho tam giác ABC vuông tại A; đường cao AH; kẻ HE;HF lần lươtj vuông góc với AB;AC
a) Cho góc B=60 độ,AC=6cm .Tính các cạnh và các góc còn lại của tam giác ABC
b) chứng minh \(AE\times AB=AF\times AC\)
c) chứng minh \(BC\times BE\times CF=AH^3\)
d)\(\frac{EB}{FC}=\left(\frac{AB}{AC}\right)^3\)
e)\(AB\times AC\times BE\times CF=\left(HE^2+HF^2\right)^2\)
sin alpha +cos alpha = căn 2 .cho tam giác abc a=90 ah vuông góc bc chứng minh rằng (ab+bc+ac).(ac+ab-bc) >=4(ah^2)
giải giúp mik ạ
Bài 1: Biêt sin a = 0,6. Tính cos a, tg a, cotg a?
Bài 2 : biết tg a =2. Tính sin a, cos a, cotg a?
Bài 3: Cho tam giác ABC biết AB = 5, BC = 12, AC= 13
a, Chứng minh rằng tam giác ABC vuông
b, Tính tỉ số lượng giác của góc A và góc C
Bài 1:
\(\cos\alpha=\dfrac{4}{5}\)
\(\tan\alpha=\dfrac{3}{4}\)
\(\cot\alpha=\dfrac{4}{3}\)
cho tg ABC\(\perp\)A, đường phân giác BD.
CMR: a) \(\tan\dfrac{B}{2}=\dfrac{AC}{BC+AB}\)
CMR: b) S(ABC)=\(\dfrac{AB\times BC}{2}\times\sin B\)
b: \(\dfrac{AB\cdot BC}{2}\cdot sinB\)
\(=\dfrac{AB\cdot BC}{2}\cdot\dfrac{AC}{BC}=\dfrac{AB\cdot AC}{2}\)
\(=S_{ABC}\)
a: Xét ΔABD vuông tại A có tan ABD=AD/AB
Xét ΔCBA có BD là phân giác
nên AD/AB=CD/BC
=>\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)
=>\(tan\left(ABD\right)=\dfrac{AC}{AB+BC}\)
Cho tam giác ABC có BC = a, AC = b, AB = c, đường phân giác trong ứng với góc A là la. Chứng minh: \(l_a=\dfrac{2bc.\cos\dfrac{A}{2}}{b+c}\)
cho tam giác ABC vuông tại A có đg cao AH. Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F
chứng minh BE=BC\(\times\cot^3B\)
biết AB= 6cm, AC=8cm
Sửa đề: \(BE=BC\cdot cos^3B\)
Xét ΔAHB vuông tại H có \(cosB=\dfrac{BH}{BA}\)
Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}\)
Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)
\(cos^3B=cosB\cdot cosB\cdot cosB\)
\(=\dfrac{BH}{BA}\cdot\dfrac{BA}{BC}\cdot\dfrac{BE}{BH}\)
\(=\dfrac{BE}{BC}\)
=>\(BE=BC\cdot cos^3B\)
cho tam giác ABC vuông tại A(AB lớn hơn AC)đường trung tuyến AM.Gọi E và F lần lượt là hình chiếu của M lên AB và AC
a)chứng minh tam giac CFM va tam giác ABC đồng dạng,tính tỉ số đồng dạng của hai tam giác
b)hạ đường cao AH của tam giác .chứng minh \(CM\times CH=CF\times CA\)
c)chứng minh \(BH\times BC=4AE^2\)
d)cho AB=5cm,AC=12cm,tính diện tích tam giác BEH
Cho tam giác ABC có góc A = 60 độ. Chứng minh rằng BC^2 = AB^2 + AC^2 - AB x AC
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB, HE vuông góc AC. Biết AB= 4 cm, AC= 4 căn 3
Chứng Minh: S ade= S abc . (1-cos^2 B). sin^2 C
ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔAHC vuông tại H có HE là đườg cao
nên AE*AC=AH^2
=>AD*AB=AE*AC
=>AD/AC=AE/AB
Xét ΔABC vuông tại A có tan B=AC/AB=căn 3
=>góc B=60 độ
=>góc C=30 độ
BC=căn AB^2+AC^2=8(cm)
\(S_{ABC}=\dfrac{1}{2}\cdot4\cdot4\sqrt{3}=8\sqrt{3}\left(cm^2\right)\)
\(AH=AB\cdot\dfrac{AC}{BC}=\dfrac{4\cdot4\sqrt{3}}{8}=2\sqrt{3}\left(cm\right)\)
Xét ΔADE và ΔACB có
AD/AC=AE/AB
góc DAE chung
=>ΔADE đồng dạng với ΔACB
=>S ADE/S ACB=(AD/AC)^2
\(=\left(\dfrac{AH^2}{AB}:AC\right)^2=\left(\dfrac{AH^2}{AB\cdot AC}\right)^2=\left(\dfrac{12}{4\cdot4\sqrt{3}}\right)^2=\dfrac{3}{16}\)
\(\left(1-cos^2B\right)\cdot sin^2C=sin^2B\cdot sin^2C\)
\(=\left(sinB\cdot sinC\right)^2=\left(\dfrac{AB}{BC}\cdot\dfrac{AC}{BC}\right)^2=\left(\dfrac{4}{8}\cdot\dfrac{4\sqrt{3}}{8}\right)^2=\dfrac{3}{16}\)
=>\(S_{ADE}=S_{ABC}\cdot\left(1-cos^2B\right)\cdot sin^2C\)