Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trang nguyễn
Xem chi tiết
Ngô Lan Chi
Xem chi tiết
Diệu Linh Phạm
Xem chi tiết
Xinh Anime
6 tháng 10 2021 lúc 15:06

Ko biết làm

Nguyễn Lê Phước Thịnh
6 tháng 10 2021 lúc 15:27

Bài 1: 

\(\cos\alpha=\dfrac{4}{5}\)

\(\tan\alpha=\dfrac{3}{4}\)

\(\cot\alpha=\dfrac{4}{3}\)

Nguyễn Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2023 lúc 23:57

b: \(\dfrac{AB\cdot BC}{2}\cdot sinB\)

\(=\dfrac{AB\cdot BC}{2}\cdot\dfrac{AC}{BC}=\dfrac{AB\cdot AC}{2}\)

\(=S_{ABC}\)

a: Xét ΔABD vuông tại A có tan ABD=AD/AB

Xét ΔCBA có BD là phân giác

nên AD/AB=CD/BC

=>\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)

=>\(tan\left(ABD\right)=\dfrac{AC}{AB+BC}\)

Thảo Vi
Xem chi tiết
Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2023 lúc 20:11

Sửa đề: \(BE=BC\cdot cos^3B\)

Xét ΔAHB vuông tại H có \(cosB=\dfrac{BH}{BA}\)

Xét ΔABC vuông tại A có \(cosB=\dfrac{BA}{BC}\)

Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)

\(cos^3B=cosB\cdot cosB\cdot cosB\)

\(=\dfrac{BH}{BA}\cdot\dfrac{BA}{BC}\cdot\dfrac{BE}{BH}\)

\(=\dfrac{BE}{BC}\)

=>\(BE=BC\cdot cos^3B\)

Best monument
Xem chi tiết
olivouz____ha
Xem chi tiết
Hạnh Hồng
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 8 2023 lúc 23:56

ΔAHB vuông tại H có HD là đường cao

nên AD*AB=AH^2

ΔAHC vuông tại H có HE là đườg cao

nên AE*AC=AH^2

=>AD*AB=AE*AC

=>AD/AC=AE/AB

Xét ΔABC vuông tại A có tan B=AC/AB=căn 3

=>góc B=60 độ

=>góc C=30 độ

BC=căn AB^2+AC^2=8(cm)

\(S_{ABC}=\dfrac{1}{2}\cdot4\cdot4\sqrt{3}=8\sqrt{3}\left(cm^2\right)\)

\(AH=AB\cdot\dfrac{AC}{BC}=\dfrac{4\cdot4\sqrt{3}}{8}=2\sqrt{3}\left(cm\right)\)

Xét ΔADE và ΔACB có

AD/AC=AE/AB

góc DAE chung

=>ΔADE đồng dạng với ΔACB

=>S ADE/S ACB=(AD/AC)^2

\(=\left(\dfrac{AH^2}{AB}:AC\right)^2=\left(\dfrac{AH^2}{AB\cdot AC}\right)^2=\left(\dfrac{12}{4\cdot4\sqrt{3}}\right)^2=\dfrac{3}{16}\)

\(\left(1-cos^2B\right)\cdot sin^2C=sin^2B\cdot sin^2C\)

\(=\left(sinB\cdot sinC\right)^2=\left(\dfrac{AB}{BC}\cdot\dfrac{AC}{BC}\right)^2=\left(\dfrac{4}{8}\cdot\dfrac{4\sqrt{3}}{8}\right)^2=\dfrac{3}{16}\)

=>\(S_{ADE}=S_{ABC}\cdot\left(1-cos^2B\right)\cdot sin^2C\)