Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hạnh Hồng

Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB, HE vuông góc AC. Biết AB= 4 cm, AC= 4 căn 3

Chứng Minh: S ade= S abc . (1-cos^2 B). sin^2 C

Nguyễn Lê Phước Thịnh
7 tháng 8 2023 lúc 23:56

ΔAHB vuông tại H có HD là đường cao

nên AD*AB=AH^2

ΔAHC vuông tại H có HE là đườg cao

nên AE*AC=AH^2

=>AD*AB=AE*AC

=>AD/AC=AE/AB

Xét ΔABC vuông tại A có tan B=AC/AB=căn 3

=>góc B=60 độ

=>góc C=30 độ

BC=căn AB^2+AC^2=8(cm)

\(S_{ABC}=\dfrac{1}{2}\cdot4\cdot4\sqrt{3}=8\sqrt{3}\left(cm^2\right)\)

\(AH=AB\cdot\dfrac{AC}{BC}=\dfrac{4\cdot4\sqrt{3}}{8}=2\sqrt{3}\left(cm\right)\)

Xét ΔADE và ΔACB có

AD/AC=AE/AB

góc DAE chung

=>ΔADE đồng dạng với ΔACB

=>S ADE/S ACB=(AD/AC)^2

\(=\left(\dfrac{AH^2}{AB}:AC\right)^2=\left(\dfrac{AH^2}{AB\cdot AC}\right)^2=\left(\dfrac{12}{4\cdot4\sqrt{3}}\right)^2=\dfrac{3}{16}\)

\(\left(1-cos^2B\right)\cdot sin^2C=sin^2B\cdot sin^2C\)

\(=\left(sinB\cdot sinC\right)^2=\left(\dfrac{AB}{BC}\cdot\dfrac{AC}{BC}\right)^2=\left(\dfrac{4}{8}\cdot\dfrac{4\sqrt{3}}{8}\right)^2=\dfrac{3}{16}\)

=>\(S_{ADE}=S_{ABC}\cdot\left(1-cos^2B\right)\cdot sin^2C\)


Các câu hỏi tương tự
Trần Châu Minh Hạnh
Xem chi tiết
Nguyen Anh
Xem chi tiết
Nguyễn Thiên Anh
Xem chi tiết
Phong Linh
Xem chi tiết
Hòa Huỳnh
Xem chi tiết
Kon Kon
Xem chi tiết
kem dâu vị bạc hà >
Xem chi tiết
quynh quynh
Xem chi tiết
Bùi Thọ Anh
Xem chi tiết