a) cho n thuộc N; n không chia hết cho 3 ; chứng minh n2-1 chia hết cho 3
b) cho p là số nguyên tố lớn hơn 3 hỏi p2+2003 là số nguyên tố hay hợp số
Cho a^m=a^n (a thuộc Q; m,n thuộc N) tìm các số m và n
cho a^m>a^n (a thuộc Q ; a>0;m,n thuộc N) so sánh m và n
Cho a^m=a^n ( a thuộc Q; m,n thuộc N); b) Cho a^m> a^n (a thuộc Q; a>0; m,n thuộc N). Mình cần gấp,ai giúp mik với
cho A= 3/ n-2 ; n thuộc Z. Tìm n để A thuộc Z
Cho b= n/n+1 ; n thuộc Z. Tìm n để B thuộc Z
A nguyên <=> 3 ⋮ n - 2
=> n - 2 thuộc Ư(3)
=> n - 2 thuộc {-1;1;-3;3}
=> n thuộc {1;3;-1;5}
B nguyên <=> n ⋮ n + 1
=> n + 1 - 1 ⋮ n + 1
=> 1 ⋮ n + 1
=> như a
ĐK : \(n\ne2\)
\(A=\frac{3}{n-2}\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
ĐK : \(n\ne-1\)
\(B=\frac{n}{n+1}=\frac{n+1-1}{n+1}=1-\frac{1}{n+1}\)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 1 | 1 | -1 |
n | 0 | -2 |
Tìm các số m và n thỏa mãn:a^m và a^n(a thuộc Q và m,n thuộc N)
Cho a^m>a^n(a thuộc ,a>0 và m,n thuộc N)so sanh m và n
Câu a
Nếu a=0 thì m và n là các số tự nhiên khác 0 tùy ý
a=1 thì m và n là các số tự nhiên tùy ý
a=-1 thì m và n là các số chẵn tùy ý hoặc các số lẻ tùy ý
a khác 0,a khác+_ 1 thì m=n
Câu b
Nếu a>1 thì m>n
Nếu 0<a<1 thì m<n
Cho hai đường thẳng m, n
a) Vẽ điểm A sao cho A không thuộc m và không thuộc n
b) Vẽ điểm B sao cho B thuộc m và B không thuộc n
c) Vẽ điểm C sao cho C thuộc m và C thuộc n
a, cmr n^2+n chia hết cho 2 với n thuộc N
b,cmr a^2b+ b^2a chia hết cho 2 với a.b thuộc N
c, cmr51^n+47^102 chia hết cho 10 n thuộc N
a, \(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)
Vậy ...
b, \(a^2b+b^2a=ab\left(a+b\right)\)
Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)
Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)
Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)
Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)
c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)
1. cho n thuộc z
c/m a=n^4-n^2 chia hết cho 12
2.cho n thuộc z
c/m a= n^2(n^4-1) chia hết cho 60
3.cho n thuộc z
c/m a=2n(16-n^4) chia hết cho 30
4.cho a,b thuộc z
c/m M=ab(a^4-b^4) chia hết cho 30
Cho A=n+1/n-2 (n thuộc Z)
tìm n thuộc Z để A thuộc Z
Để A € Z
Thì n+1 chia hết cho n—2
==> n—2+3 chia hết cho n—2
Vì n—2 chia hết cho n—2
Nên 3 chia hết cho n—2
==> n—2 € Ư(3)
==> n—2 € {1;—1;3;—3}
Ta có
TH1: n—2=1
n=1+2
n=3
TH2: n—2=—1
n=—1+2
n=1
TH3: n—2=3
n=3+2
n=5
TH4: n—2=—3
n=—3+2
n=—1
Vậy n € {3;1;5;—1}
Cho a^m=a^n (a thuộc Z; m,n thuộc N). Tìm các số m và n. , Cho a^m>a^n ( a thuộc Z; a>0; m,n thuộc N). So sánh m và n
cho a^m=a^n (a thuộc Q;m,n thuộc N).Tìm các số m và n
\(a^m=a^n\)
\(\Rightarrow m=n\)
Với \(a^m=a^n\) mọi \(m=n\)
Vậy: \(m=n\in\left\{1;2;3;4;...\right\}\)
\(a^m=a^n\left(a\in Q;m;n\inℕ\right)\)
\(\Rightarrow m=n\)