A=\(1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}+\frac{3}{400}\)
Chứng minh A< 1. Biết
\(A=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{399\sqrt{400}+400\sqrt{399}}\)
CM bđt phụ nhá: \(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) \(\left(n\inℕ^∗\right)\)
\(VT=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(\left(n+1\right)\sqrt{n}-n\sqrt{n+1}\right)\left(\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\right)}\)
\(VT=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(VT=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}\)
\(VT=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
\(VT=\frac{\left(n+1\right)\sqrt{n}}{n\left(n+1\right)}-\frac{n\sqrt{n+1}}{n\left(n+1\right)}\)
\(VT=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}=VP\)
Áp dụng vào A ta có :
\(A=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{399\sqrt{400}+400\sqrt{399}}\) ( olm bị lỗi nên ko dám viết nhìu )
\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(A=1-\frac{1}{20}=\frac{19}{20}\)
Vậy \(A=\frac{19}{20}\)
Chúc bạn học tốt ~
Tính\(1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}+\frac{3}{400}\)
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
Xét phân thức phụ sau:
Ta có: \(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\left(\frac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)
\(=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thay vào ta được:
\(BT=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(BT=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
Đặt biểu thức đã cho là A
Tổng quát ta có: Với \(a\inℕ^∗\)ta có:
\(\frac{1}{\left(a+1\right)\sqrt{a}+a.\sqrt{a+1}}=\frac{\left(a+1\right)-a}{\sqrt{a}.\sqrt{a+1}.\left(\sqrt{a}+\sqrt{a+1}\right)}\)
\(=\frac{\left(\sqrt{a+1}-\sqrt{a}\right)\left(\sqrt{a+1}+\sqrt{a}\right)}{\sqrt{a}.\sqrt{a+1}.\left(\sqrt{a}+\sqrt{a+1}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a}.\sqrt{a+1}}\)
\(=\frac{\sqrt{a+1}}{\sqrt{a}.\sqrt{a+1}}-\frac{\sqrt{a}}{\sqrt{a}.\sqrt{a+1}}=\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a+1}}\)
Áp dụng kết quả trên ta có:
Với \(n=1\)\(\Rightarrow\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
Với \(n=2\)\(\Rightarrow\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
Với \(n=3\)\(\Rightarrow\frac{1}{4\sqrt{3}+3\sqrt{4}}=\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\)
.....................
Với \(n=399\)\(\Rightarrow\frac{1}{400\sqrt{399}+399\sqrt{400}}=\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(\Rightarrow A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+......+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
a, Chứng minh
\(\frac{1}{\left(n+1\right).\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, Áp dụng
\(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}......+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
a)\(\frac{1}{\left(n+1\right).\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2.n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b)\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\( S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
\(a,\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}\cdot\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}\left(n+1-n\right)}\)
\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}=\frac{\sqrt{n-1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
Bài 1 : tính nhanh
a) \(A=\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}\)
Các bn giúp mik nhá
A=\(\frac{15}{34}+\frac{7}{21}+\frac{9}{34}-1\frac{15}{17}+\frac{2}{3}\)
B=\(16\frac{2}{7}:\left(-\frac{3}{5}\right)-28\frac{2}{7}:\left(-\frac{3}{5}\right)\)
C=\(25\cdot\left(-\frac{1}{3}\right)^3+\frac{1}{5}-2\cdot\left(-\frac{1}{2}\right)^2-\frac{1}{2}\)
D=\(\left(-2\right)^3\cdot\left(\frac{3}{4}-0,25\right):\left(2\frac{1}{4}-1\frac{1}{6}\right)\)
E=\(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
F=\(\left(-\frac{3}{2}\right)^2+|-\frac{5}{6}|-1\frac{1}{2}:6\)
\(A=\frac{15}{34}+\frac{7}{21}+\frac{9}{34}-1\frac{15}{17}+\frac{2}{3}=\frac{15}{34}+\frac{7}{21}+\frac{9}{34}-\frac{64}{34}+\frac{14}{21}=\left(\frac{15}{34}+\frac{9}{34}-\frac{64}{34}\right)+\left(\frac{7}{21}+\frac{14}{21}\right)=\frac{30}{34}+\frac{21}{21}=\frac{15}{17}+1=\frac{32}{17}\)
Tính nhah ---- giúp mik giải nâ các bn thank nhiều nhiều
a)\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}}:\frac{3+\frac{3}{2}+\frac{3}{3}+\frac{3}{4}}{2-\frac{2}{2}+\frac{2}{3}-\frac{2}{4}}+\frac{1}{3}\)
b) \(\frac{\frac{1}{3}-\frac{1}{5}-\frac{1}{7}}{\frac{2}{3}-0,4-\frac{2}{7}}+\frac{\frac{3}{8}-\frac{3}{16}-\frac{3}{32}+\frac{3}{64}}{\frac{1}{4}-\frac{1}{8}-\frac{1}{16}+\frac{1}{32}}\)
c) \(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
a, Cho a + b + c =0 chứng minh:
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)
b, Tính
\(A=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{399^2}+\frac{1}{400^2}}\)
Mình giúp phần a thôi, phần b chir là áp dụng không có gì khó cả.
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\left(a+b+c=0\right)\)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\left(đpcm\right)\)
b, \(A=\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{399^2}+\frac{1}{400^2}}\)
\(A=\sqrt{\frac{1}{1^2}+\frac{1}{1^2}+\frac{1}{\left(-2\right)^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{\left(-3\right)^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{399^2}+\frac{1}{\left(-400\right)^2}}\)
có 1 + 1 - 2 = 1 + 2 - 3 = ... + 1 + 399 - 400 = 0
nên theo câu a ta có :
\(A=\left|1+\frac{1}{1}-\frac{1}{2}\right|+\left|1+\frac{1}{2}-\frac{1}{3}\right|+...+\left|1+\frac{1}{399}-\frac{1}{400}\right|\)
A = 1 + 1 -1/2 + 1 + 1/2 - 1/3 + 1 + 1/3 - 1/4 + ... + 1 + 1/399 - 1/400
= 400 1/400
= 159999/400
Bạn ơi cho mình hỏi áp dụng như lào vậy???
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)
\(\frac{A}{2}=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+....+\frac{100}{2^{101}}\)\(A-\frac{A}{2}=\left(1+\frac{3}{2^3}+....+\frac{100}{2^{100}}\right)-\left(\frac{1}{2}+\frac{3}{2^4}+.....+\frac{100}{2^{101}}\right)\)
\(\frac{A}{2}=\frac{1}{2}+\frac{3}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+....+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
\(\frac{A}{2}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}-\frac{1}{2^{101}}\)
\(\frac{A}{2}=\left(1-\left(\frac{1}{2}\right)^{101}\right).2-\frac{100}{2^{101}}\)
\(\frac{A}{2}=\frac{2^{101}-1}{2^{100}}-\frac{100}{2^{101}}\)
\(A=\frac{2^{101}-1}{2^{99}}-\frac{100}{2^{100}}\)