CMR có vô số nguyên tố chia 3 dư 2
CMR có vô số nguyên tố chia 3 dư 2
a, Có hay không một số nguyên tố mà khi chia 12 thì dư 9? Giải thích?
b, CMR: Trong 3 số nguyên tố lớn hơn 3, luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12
b/Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
a, Có hay không một số nguyên tố mà khi chia 12 thì dư 9? Giải thích
b, CMR: Trong 3 số nguyên tố lớn hơn 3, luôn tồn tại 2 số nguyên tố mà tổng hoặc hiệu của chúng chia hết cho 12
Bài 1:a)Cho n là một số ko chia hết cho 3.CMR n^2 chia 3 dư 1
b)Cho p là một số nguyên tố lớn hơn 3.Hỏi p^2+2003 là số nguyên tố hay hợp số?
Bài 2:Cho p là số nguyên tố lớn hơn 3.
a)chứng tỏ rằng p có dạng 6k+1 và 6k+5
b)Biết 8p +1 cũng là một số nguyên tố,CMR 4p+1 là hợp số
a)cho n không chia hết cho 3.CMR : n^2 chia 3 dư 1
b)cho P là số nguyên tố lớn hơn 3. hỏi P^2014 + 2015 là số nguyên tố hay hợp số? vì sao
cho n là số nguyên tố không chia hết cho 3. CMR n2 chia 3 dư 1
Bài 1:Cho p và 8p-1 là các số nguyên tố.CMR:8p+1 là hợp số
Bài 2:CMR mọi số nguyên tố lớn hơn 2 đều có dạng 4k+1 hoặc 4k-1
Bài 3:1 số nguyên tố p chia cho 42 có số dư là r(r là hợp số).Tìm r???
CMR : Bình phương của các số nguyên tố khác 2 và 3 chia cho 12 dư 1
CMR bình phương của 1 số nguyên tố khác 2 và 3 khi chia cho 12 đều dư 1
Trần Phương Nhi câu nào cũng: tick đi mình làm cho