Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lỗ Thị Thanh Lan
Xem chi tiết
Dat nguyen van
11 tháng 11 2014 lúc 21:57

A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)

B ,  nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI

nếu  p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này

vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số

chứng tỏ 4p+1 là hợp số (đpcm)

Lê Bảo Khanh
16 tháng 4 2016 lúc 20:15

Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1

Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số   (LOẠI)

VẬY ......................

Lê Bảo Khanh
16 tháng 4 2016 lúc 20:23

b)Tương tự cách làm trên:

Nếu p=3k+1 thì 8p+1 =8(3k+1)+1=24k+8+1 =24k+9chia hết cho 3 nên là hợp số(loại)

Vậy.....................................

Đạng Văn Chí
Xem chi tiết
er hack
Xem chi tiết
Akai Haruma
8 tháng 1 2022 lúc 21:47

Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$

Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$
Mà $2p+1>3$ nên $2p+1$ không là số nguyên tố (trái giả thiết)

Do đó $p=3k+2$. Khi đó:
$4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ với mọi $p>3$ nên $4p+1$ là hợp số.

Ta có đpcm.

duyenmamy
Xem chi tiết
Trần Phúc Đông
Xem chi tiết
Nguyễn Anh Quân
6 tháng 11 2017 lúc 22:17

Để p và 2p+1 đều nguyên tố > 3 => p và 2p+1 đều ko chia hết cho 3

=> p chia 3 dư 1 hoặc 2 và 2p+1 chia hết cho 3 => p chia 3 dư 2 ; p có dạng 3k+2(k thuộc N)

Khi đó : 4p+1 = 4.(3k+2)+1 = 12k+8+1 = 12k+9 = 3.(4k+3) chia hết cho 3 

Mà 4p+1 > 3 => 4p+1 là hợp số (ĐPCM)

GoKu Đại Chiến Super Man
Xem chi tiết
Phạm Ngọc Minh
Xem chi tiết
Akai Haruma
2 tháng 9 2023 lúc 17:23

Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho 3. Nghĩa là $p$ chia $3$ dư $1$ hoặc $2$. 

Nếu $p$ chia $3$ dư $1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p>3$ nên $2p+1$ không là snt (trái với đề) 

$\Rightarrow p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}$
$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số.

Phạm Ngọc Minh
Xem chi tiết
Nguyễn Xuân Thành
1 tháng 9 2023 lúc 17:17

Vì p là số nguyên tố lớn hơn 3 nên \(p=3k+1\) hoặc \(p=3k+2\) \(\left(k\inℕ^∗\right)\)

Nếu \(p=k+1\) thì \(2p+1=2.\left(3k+1\right)+1=6k+3\in3\) và \(6k+3>3\)

\(\Leftrightarrow2p+1\) là hợp số \(\left(loại\right)\)

Nếu \(p=3k+2\) . Khi đó \(4p+1=4.\left(3k+2\right)=1=12k+9\in3\)

Và \(12k+9>3\) nên là hợp số \(\left(nhận\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 11 2019 lúc 9:11

Vì p là số nguyên tố lớn hơn 3, nên p = 3k+1 hoặc p = 3k+2 (k ∈ N*).

Nếu p = 3k+1 thì 2p+1 = 2(3k+1)+1 = 6k+3 ∈ 3 và 6k+3 > 3 nên 2p+1 là hợp số (loại).

Vậy p = 3k+2. Khi đó 4p+1 = 4(3k+2)+1 = 12k+93 và 12k+9>3 nên là hợp số.