Cho A= 3*x^(n-1)*y^6- 5x^(n+1)*y^4
B=2*x^3*y^n
Tìm số tự nhiên n để A chia hết cho B
tìm số tự nhiên n để A(x) chia hết cho B(x):
A(x)=3x^n-1.y^6-5x^n+1
B(x)=2x^3.y^n
a.Tìm các số tự nhiên x,y sao cho ( 2.x +1 ).( y-5 )=12
b.Tìm số tự nhiên x,y sao cho 4.n -5 chia hết cho 2.n-1
c.Tìm số tự nhiên n đê: 6.n+3 chia hết cho 3.n+6
d.Tìm các số tự nhiên n sao cho 5.n+45 chia hết cho n+3
tìm số tự nhiên N để A chia hết cho B
A=3x^n-1-5x^n+1*y^4
B=2x^3*y^n
1 . Tìm số tự nhiên x biết
a , ( 2 . x + 1 ) chia hết cho ( x - 1 )
b , ( 2 . x - 5 ) chia hết cho ( x - 4 )
c , x + 6 = ( x =+ 1 ) chia hết cho y ( y thuộc N * )
2 Tìm n
a , n + 6 chia hết cho n + 1
b , 2 .n + 3 chia hết cho ( m + 1 )
c , 3 . 5 + 11 chia hết cho n + 3
các bạn giải giúp mình nha , mình mk cho
2 Tìm n
a, n+6 chia hết cho n+1/ =n+1+5 chia hết cho n+1/ =(n+1).5 chia hết cho n+1/ suy ra n+1 thuộc ước (5)
Để n+1 chia hết cho n+1
suy ra 5 chia hết cho n+1/ Suy ra n thuộc Ư(5)=(-1; -5; 1; 5)
Ta lập bảng
n+1 -1 -5 1 5
n -2 -6 0 4
suy ra: n thuộc (-2; -6; 0; 4)
thử lại đi xem coi đúng ko nhé
1 . Tìm số tự nhiên x biết
a , ( 2 . x + 1 ) chia hết cho ( x - 1 )
b , ( 2 . x - 5 ) chia hết cho ( x - 4 )
c , x + 6 = ( x =+ 1 ) chia hết cho y ( y thuộc N * )
2 Tìm n
a , n + 6 chia hết cho n + 1
b , 2 .n + 3 chia hết cho ( m + 1 )
c , 3 . 5 + 11 chia hết cho n + 3
các bạn giải giúp mình nha , mình mk cho
Câu 6:
a) Cho a^n chia hết cho 5( với a,n ϵN*). Chứng tỏ rằng: a^2+2022 chia hết cho 5.
b) Tìm tất cả các dố tự nhiên x,y để: 4^x +2^3= 3^y
Bài 4 : tìm số tự nhiên n để đa thức A chia hết đa thức B .
a) A = x^2 y^4 + 2x^3 y^n ; B = x^n y^2
b) A = 5x^8 y^4 - 9x^2n y^6 ; B = - x^7 y^n
c) A = 12x^8 y^2n + 25x^12 y^5 z^2 ; B 4x^3n y^4
d) A = -13x^17 y^2n-3 + 22x^16 y^7 ; B = -7x^3n+1 y^6
e) A= 20x^5 y^2n - 10x^4 y^3n + 15x^5 y^6 ; B = 3x^2 y^n+1
Giúp mình vs ạ mình đang cần gấp
a: \(\frac{A}{B}=\frac{x^2y^4+2x^3y^{n}}{x^{n}y^2}=x^{2-n}\cdot y^2+2\cdot x^{3-n}\cdot y^{n-2}\)
Để A chia hết cho B thì \(\begin{cases}2-n\ge0\\ 3-n\ge0\\ n-2\ge0\end{cases}\Rightarrow\begin{cases}n\le2\\ n\le3\\ n\ge2\end{cases}\Rightarrow\begin{cases}n\le2\\ n\ge2\end{cases}\)
=>n=2
b: \(\frac{A}{B}=\frac{5x^8y^4-9x^{2n}y^6}{-x^7y^{n}}=-5xy^{4-n}+9x^{2n-7}y^{6-n}\)
Để A chia hết cho B thì \(\begin{cases}4-n\ge0\\ 2n-7\ge0\\ 6-n\ge0\end{cases}\Rightarrow\begin{cases}n\le4\\ n\ge\frac72\\ n\le6\end{cases}\Rightarrow\frac72\le n\le4\)
mà n là số tự nhiên
nên n=4
c: \(\frac{A}{B}=\frac{12x^8y^{2n}+25x^{12}y^5z^2}{4x^{3n}y^4}=3x^{8-3n}y^{2n-4}+\frac{25}{4}x^{12-3n}yz^2\)
Để A chia hết cho B thì \(\begin{cases}8-3n\ge0\\ 2n-4\ge0\\ 12-3n\ge0\end{cases}\Rightarrow\begin{cases}3n\le8\\ n\ge2\\ 3n\le12\end{cases}\)
=>\(2\le n\le\frac83\)
mà n là số tự nhiên
nên n=2
d: \(\frac{A}{B}=\frac{-13x^{17}y^{2n-3}+22x^{16}y^7}{-7x^{3n+1}y^6}=\frac{13}{7}x^{17-3n-1}y^{2n-3-6}-\frac{22}{7}x^{16-3n-1}y\)
\(=\frac{13}{7}\cdot x^{16-3n}y^{2n-9}-\frac{22}{7}x^{15-3n}y\)
Để A chia hết cho B thì \(\begin{cases}16-3n\ge0\\ 2n-9\ge0\\ 15-3n\ge0\end{cases}\Rightarrow\begin{cases}3n\le16\\ 2n\ge9\\ 3n\le15\end{cases}=>\begin{cases}n<=\frac{16}{3}\\ n\ge\frac92\\ n\le5\end{cases}\)
=>\(\frac92\le n\le5\)
mà n là số tự nhiên
nên n=5
e: \(\frac{A}{B}=\frac{20x^5y^{2n}-10x^4y^{3n}+15x^5y^6}{3x^2y^{n+1}}\)
\(=\frac{20}{3}\cdot x^{5-2}\cdot y^{2n-n-1}-\frac{10}{3}\cdot x^{4-2}\cdot y^{3n-n-1}+5x^3y^{6-n-1}\)
\(=\frac{20}{3}\cdot x^3\cdot y^{n-1}-\frac{10}{3}x^2y^{2n-1}+5x^3y^{6-n}\)
Để A chia hết cho B thì \(\begin{cases}n-1\ge0\\ 2n-1\ge0\\ 6-n\ge0\end{cases}\Rightarrow\begin{cases}n\ge1\\ n\ge\frac12\\ n\le6\end{cases}\Rightarrow1\le n\le6\)
mà n là số tự nhiên
nên n∈{1;2;3;4;5;6}
Để đa thức A=3xn-1y6- 5xn+1y4 chia hết cho đơn thức B=2x3yn thì số tự nhiên n là

Vì để 1 đơn thức chia hết cho 1 đơn thức khác thì số mũ của mỗi biến trong đơn thức bị chia này phải lớn hơn hoặc bằng số mũ của mỗi biến tương ứng trong đơn thức chia
1.Tìm x,y để :
a)x378y chia hết cho 8 và 9
b)3x23y chia hết cho 5 và 11
c)3x4y5 chia hết cho 9 và x-y=2
2.Cho n€N, chứng minh rằng
a) (n+2016)*(n+2019) chia hết cho 2
b) (n+2015)*(n+2016)*(n+2017) chia hết cho 3
c) n*(n+1)*(2n+1) chia hết cho 3
3.Chứng minh rằng:
-Tổng 5 số tự nhiên liên tiếp chia hết cho 5
-Tổng 6 số tự nhiên liên tiếp không chia hết cho 6
4.Tìm số tự nhiên lớn nhất có 3 chữ số chia 4 và chia 25 dư 8
5.Tìm a biết:
a)32a1 chia hết cho 7
b) 1a25 chia hết cho 13
c)a38 chia hết cho 6
1.a)x378y chia hết cho 8 =>78y chia hết cho 8 (vì số có 3 chữ số cuối chia hết cho 8 thì số đó chia hết cho 8)
=>y=4
=>x3784 chia hết cho 9 => (x+3+7+8+4) chia hết cho 9
=> (x+22) chia hết cho 9
=>x=5
vậy số cần tìm là 53784
1.b)3x23y chia hết cho 5 => y chia hết cho 5
=>y= 0 hoặc 5
TH1.1: nếu y=0,x là chẵn
=>3x230 chia hết cho 11=>(3+2+0)-(x+3) hoặc (x+3)-(3+2+0) chia hết cho 11 (vì tổng các chữ số hàng chẵn - tổng các chữ số hàng lẻ chia hết cho 11 thì số đó chia hết cho 11 hoặc ngược lại)
=>5-(x+3) hoặc (x+3)-5 chia hết cho 11
ta xét điều kiện (x+3)-5 chia hết cho 11 vì 5-(x+3)>11
nếu (x+3)-5=0 thì x=2(chọn)
nếu (x+3)-5=11 thì x=13(loại)
nếu (x+3)-5>11 mà chia hết cho 11 thì x >2 (> số có 1 chữ số)
vậy số cần tìm là 32230
K CHO MÌNH NHÉ !!!!!!
xim lỗi ở chỗ ta xét điều kiện thì bạn thay chỗ 5-(x+3)>11 thì bạn sửa dấu > thành < nhé !!!!
làm tiếp ý b bạn nhé
thử TH2 với y=5 tương tự vậy thì mình sẽ ra kết quả là 37235