(Quảng Ninh - 2020)
Cho đường tròn $(O; R)$ và $A$ là một điểm nằm bên ngoài đường tròn. Từ điểm $A$ kẻ hai tiếp tuyến $AB$ và $AC$ với đường tròn $(O)$ ($B$ và $C$ là hai tiếp điểm). Gọi $H$ là giao điểm của $AO$ và $BC$. Kẻ đường kính $BD$ của đường tròn $(O)$, $AD$ cắt đường tròn tại điểm thứ hai là $E$.
a. Chứng minh $ABOC$ là tứ giác nội tiếp.
b. Tính độ dài $AH$, biết $R = 3$cm, $AB = 4$cm.
c. Chứng minh $AE.AD = AH.AO$.
d. Tia $CE$ cắt $AH$ tại $F$. Chứng tỏ $F$ là trung điểm của $AH$.