Tìm X , biết :
3X=8*X
tìm x, biết:
a) x( 5 + 3x ) - (x+ 1)(3x - 2 ) = 12 b) 13x(x-8) - x + 8 = 0
a) \(x\left(5+3x\right)-\left(x+1\right)\left(3x-2\right)=12\)
\(5x+3x^2-3x^2+2x-3x+2=12\)
\(4x=10\)
\(x=\frac{5}{2}\)
vậy \(x=\frac{5}{2}\)
\(13x\left(x-8\right)-x+8=0\)
\(13x\left(x-8\right)-\left(x-8\right)=0\)
\(\left(13x-1\right)\left(x-8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}13x-1=0\\x-8=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{13}\\x=8\end{cases}}\)
vậy \(\orbr{\begin{cases}x=\frac{1}{13}\\x=8\end{cases}}\)
Tìm x biết 3x + 3^x+1= 3^8 . 2 + 2 . 3^8. 2017^0
\(3^x+3^{x+1}=3^8.2+2.3^8.2017^0\)
\(3^x+3^x.3=3^8.2^2\)
\(3^x=3^8.2^2:3\)
\(3^x=3^7.2^2\)
3x+3x+1=38.2+2.38.201703x+3x+1=38.2+2.38.20170
3x+3x.3=38.223x+3x.3=38.22
3x=38.22:33x=38.22:3
3x=37.223x=37.22
Tìm x biết: 3x= 8
\(3^x=8\)
\(\Rightarrow log_3\left(3^x\right)=log_38\)
\(\Rightarrow x=log_38=3log_32\)
tìm x biết
a, x-(20-3x)=x+7
b, (3x-6)(8+2x)=0
a,x-(20-3x)=x+7
=>x-20+3x=x+7
=>x-20+3x-x=7
=>x+3x-x=7+20
=>3x=27
=>x=27:3
=>x=9
tìm x và y biết 3x-2/8=5y+6/3=3x-5y-8/10x
Tìm x biết 3x+8 chia hết cho x+2
3x+8 = 3(x+2) +2
=> 2 chia hết cho x+2 => x+2 =1;=> x =-1
x+2 =2 => x =0
x+2 =-1 => x =-3
x+2 = -3 => x =-5
Tìm n biết:
x( x + 3) + 3x + 8
x( x + 3) + 3x + 8
\(x\left(x+3\right)+x+2x+8=0\)
\(x\left(x+4\right)+2\left(x+4\right)=0\)
\(\left(x+2\right).\left(x+4\right)=0\)
TH1:
\(x+2=0\)
\(x=0-2\)
\(x=-2\)
TH2:
\(x+4=0\)
\(x=0-4\)
\(x=-4\)
Vậy \(x\in\left\{-2;-4\right\}\)
Tìm số nguyên x, biết:
a) | 3x + 1|= 4
b) | x+2 | = x - 3
c) ( 8 - x ) (3x + 3) ( x-4) = 0
x^3 +3x = 0
a)
\(|3x+1|=4\)
\(\Rightarrow\orbr{\begin{cases}3x+1=4\\3x+1=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=4-1\\3x=-4-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=3\\3x=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\div3\\x=-5\div3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1,6667\end{cases}}\)
Vậy x = 1
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)