bài 7 chứng tỏ rằng 2/5 < 1/2²+1/3²+1/4²+...+1/100²<1
\(\text{Bài 4. Chứng tỏ rằng:}\)
\(a\)) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{30^2}< 1\)
\(b\)) \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}>1\)
\(c\)) \(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}< 2\)
\(d\)) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{29.30}< 1\)
a)
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{30^2}\\ < \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{29.30}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{29}-\dfrac{1}{30}\\ =1-\dfrac{1}{30}=\dfrac{29}{30}< 1\left(dpcm\right)\)
b)
\(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}=\dfrac{1}{10}+\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)\\ >\dfrac{1}{10}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{1}{10}+\dfrac{90}{100}\\ =\dfrac{110}{100}>1\left(đpcm\right).\)
c)
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}\\ =\left(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{9}\right)+\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{17}\right)\\ < \dfrac{1}{5}.5+\dfrac{1}{8}.8=1+1=2\left(đpcm\right)\)
d) tương tự câu 1
Bài 7: Chứng tỏ rằng:
1/2^2 + 1/3^2 + 1/4^2 + ...1/100^2 < 3/4
Bài 8: So sánh A= 20^10 + 1 / 20^10 - 1 và B= 20^10 - 1 / 20^10 - 3.
8:
\(A=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
mà 20^10-1>20^10-3
nên A<B
Bài 1: a) Chứng minh rằng: a/n(n+a) = 1/n- 1/n+a (a,n€ N*)
b) Áp dụng câu a tinh :
A = 1/2x3 + 1/3×4 +...+ 1/99×100
B= 5/1×4 + 5/4×7 + ...+ 5/100×103
C = 1/15 + 1/35 + ... + 1/2499
Bài 2:
Chứng tỏ rằng ps n+1/n+2 tối giản với mọi n là số tự nhiên
A = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/99*100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
A = 1 - 1/100
A = 99/100
B = 5/1*4 + 5/4*7 + .... + 5/100*103
B = 5/3*(3/1*4 + 3/4*7 + ... + 3/100*103)
B = 5/3*(1 -1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)
B = 5/3*(1 - 1/103)
B = 5/3* 102/103
gọi ƯC(n + 1; n + 2) = d
=> n + 1 chia hết cho d và n + 2 chia hết cho d
=> n + 2 - n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = + 1
=> n+1/n+2 là phân số tối giản với mọi n là stn
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}\)
\(A=\frac{49}{100}\)
A=1/1*2+1/3*4+...+1/99*100. Chứng tỏ rằng 7/12<A<5/6
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào
bài 1:
chứng tỏ rằng các số dạng abcabc chia hết cho 7,11,13
Bài 2:
tìm số dư khi chia tổng 21+22+23+24+...+2100 cho7
Bài 3:
Chứng tỏ rằng :
[7n+1] * [7n+2] chia hết cho 3
Bài 2.để 2 số hạn đầu tiên lại,còn lại 99 số ta chia làm 33 nhóm mỗi nhóm có 3 số liên tiếp nhau.
Ta có \(=2+2^2+2^3+2^4+.....2^{100}\)
\(=2+2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+....+2^{98}\left(1+2+2^2\right)\)
\(=2+2.7+2^5.7+.....+2^{98}.7\)
\(\Rightarrow\)Tổng này chia 7 dư 2
bài 1
abcabc=abc.1001
có 1001chia hết cho 7
=>abc.1001 chia hết cho 7
còn chia hết cho 11 và 13 thì tương tự
bài 2
A=(2100+299+298)+...+(24+23+22)+21
A=(298.22+298.21+298.1)+....+(22.22+22.21+22.1)+21
A=298.(22+21+1)+...+22.(22+21+1)+21
A=298.7+...+22.7+21
A=(298+22).7 +21
có 7 chia hết co 7
=>(298+22).7 chia hết cho 7
=>Achia 7 dư 21
Chứng tỏ rằng :
(1+1/3+1/5+1/7+......+1/101)-(1/2+1/4+1/6+...+1/100) = 1/52+1/53+1/54+.....+1/100+1/101+1/102
Bài 1: Cho A=4+41+43+...4100
a) Tính A
b) Chứng tỏ rằng A chia hết cho 5; A chia hết cho 20; A chia hết cho 21
Bài 2: Cho B= 7+72+73+...7400
a) Tính B
b) Chứng tỏ rằng B chia hết cho 8; B chia hết cho 56; B chia hết cho 57
chứng tỏ rằng
1] 1+ 4+4^2+4^3+...+4^2012 chia hết cho 21
2] 1+7+7^2+7^3+...7^101 chia hết cho 8
3] 2+2^2+2^3+...+2^100 chia hết cho 31 và 5
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31