x-2012/2008-x-2012/2009=x-2012/2010-x-2012/2011.tìm x
Cho x=2011.Tính GTBT:
A= \(x^{2011}-2012.x^{2010}+2012.x^{2009}-2012.x^{2008}+...-2012.x^2+2012.x-1^{ }\)
Ta có: x=2011 \(\Rightarrow\)x+1=2012
\(\Rightarrow A=x^{2011}-\left(x+1\right).x^{2010}\)\(+\left(x+1\right)x^{2009}\)\(-\left(x+1\right)x^{2008}+...\)\(-\left(x+1\right)x^2+\left(x+1\right)x-1\)
=\(x^{2011}\)\(-x^{2011}-x^{2010}+x^{2010}+x^{2009}-x^{2009}-\)...\(-x^2+x^2+x-1\)
= \(x-1=2011-1=2010\)
=
Thay 2012=x+1.
\(A=x^{2011}-\left(x+1\right)x^{2010}+\left(x+1\right)x^{2009}-\left(x+1\right)x^{2008}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(A=x^{2011}-x^{2011}-x^{2010}+x^{2010}+x^{2009}-...-x^3-x^2+x^2+x-1\)
\(A=x-1=2011-1=2010\)
cho f(x)=\(^{x^{2011}}\)-2012\(x^{2010}\)+2012\(x^{2009}\)-2012\(x^{2008}\)+...-2012\(x^2\)-1
Tính f(2012)
=20122011-2012.20122010+2012.20122009-.......................-2012.20122-1
còn lại tự làm nhá
Tìm x biết: (x+1/2013) + (x+2/2012) + (x+3/2011) = (x+4/2010) + (x+5/2009) + (x+6/2008)
`Answer:`
\(\left(\frac{x+1}{2013}\right)+\left(\frac{x+2}{2012}\right)+\left(\frac{x+3}{2011}\right)=\left(\frac{x+4}{2010}\right)+\left(\frac{x+5}{2009}\right)+\left(\frac{x+6}{2008}\right)\)
\(\Leftrightarrow\frac{x+1}{2013}+1+\frac{x+2}{2012}+1+\frac{x+3}{2011}+1=\frac{x+4}{2010}+1+\frac{x+5}{2009}+1+\frac{x+6}{2008}+1\)
\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}=\frac{x+2014}{2010}+\frac{x+2014}{2009}+\frac{x+2014}{2008}\)
\(\Leftrightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}+\frac{x+2014}{2011}-\frac{x+2014}{2010}-\frac{x+2014}{2009}-\frac{x+2014}{2008}=0\)
\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
\(\Rightarrow x+2014=0\)
\(\Leftrightarrow x=-2014\)
x-1 / 2013 + x-2 / 2012 + x-3 / 2011 = x-4 / 2010 + x-5 / 2009 + x-6 / 2008
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)
=>x-2014=0
hay x=2014
So Sánh : ( giải thích lí do )
a) 2012 x 2010/2011 x 2011 và 2013 x 2009/2014 x 2008
tổng các nghiệm của phương trình (x-2010)(x-2009)(x-2008)...(x+2011)(x+2012)(x+2013)=0 bằng ?
Giải phương trình sau:
x/2008+(x+1)/2009+(x+2)/2010+(x+3)/2011+(x+4)/2012=5
\(\frac{x}{2008}+\frac{x+1}{2009}+...+\frac{x+4}{2012}=5\)
\(\Leftrightarrow\left(\frac{x}{2008}-1\right)+\left(\frac{x+1}{2009}-1\right)+...+\left(\frac{x+4}{2012}-1\right)=0\)
\(\Leftrightarrow\frac{x-2008}{2008}+\frac{x-2008}{2009}+...+\frac{x-2008}{2012}=0\)
\(\Leftrightarrow\left(x-2008\right)\left(\frac{1}{2008}+\frac{1}{2009}+..+\frac{1}{2012}\right)=0\)
Mà \(\left(\frac{1}{2008}+\frac{1}{2009}+..+\frac{1}{2012}\right)\ne0\)
Nên \(x-2008=0\)
\(\Leftrightarrow x=2008\)
Vậy : \(x=2008\)
\(\frac{x}{2008}+\frac{x+1}{2009}+\frac{x+2}{2010}+\frac{x+3}{2011}+\frac{x+4}{2012}=5\)
\(\Leftrightarrow\frac{x}{2008}+\frac{x+1}{2009}+\frac{x+2}{2010}+\frac{x+3}{2011}+\frac{x+4}{2012}-5=0\)
\(\Leftrightarrow\left(\frac{x}{2008}-1\right)+\left(\frac{x+1}{2009}-1\right)+\left(\frac{x+2}{2010}-1\right)+\left(\frac{x+3}{2011}-1\right)+\left(\frac{x+4}{2012}-1\right)=0\)
\(\Leftrightarrow\frac{x-2008}{2008}+\frac{x-2008}{2009}+\frac{x-2008}{2010}+\frac{x-2008}{2011}+\frac{x-2008}{2012}=0\)
\(\Leftrightarrow\left(x-2008\right)\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)=0\)
Vì \(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\ne0\)
\(\Rightarrow x-2008=0\)\(\Leftrightarrow x=2008\)
Vậy \(x=2008\)
Tìm x:
x . (1/2+1/3+1/4+. . .+1/2011+1/2012)
2012/1+2011/2+2010/3+2009/4+ . . . +2/2011+1/2012
=1
Giai pt sau:x-1/2013+x-2/2012+x-3/2011=x-4/2010+x-5/2009+x-6/2008
=> 3x-(1/2013+2/2012+3/2011)=3x-(4/2010+5/2009+6/2008)=>6x=-4/2010-5/2009-6/2008+1/2013+2/2012+3/2011 =>x=... làm tiếp đi bạn