Giá trị của x thỏa mãn | x/2015 + x/2016 | = | x/2016 + x/2017|
giá trị của x thỏa mãn (x/2015+x/2016)=(x/2016+x/2017)
\(\frac{x}{2015}+\frac{x}{2016}=\frac{x}{2016}+\frac{x}{2017}\)
\(\Rightarrow\frac{x}{2015}+\frac{x}{2016}-\frac{x}{2016}-\frac{x}{2017}=0\)
\(\Rightarrow\frac{x}{2015}-\frac{x}{2017}=0\)
\(\Rightarrow x.\left(\frac{1}{2015}-\frac{1}{2017}\right)=0\)
Mà ta thấy \(\frac{1}{2015}-\frac{1}{2017}\ne0\Rightarrow x=0\)
Vậy \(x=0\)
\(\frac{x}{2015}+\frac{x}{2016}=\frac{x}{2016}+\frac{x}{2017}\)
\(\Leftrightarrow\frac{x}{2015}+\frac{x}{2016}-\frac{x}{2016}-\frac{x}{2017}=0\)
\(\Leftrightarrow x\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
\(\Leftrightarrow x=0\).Do \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2016}-\frac{1}{2017}\ne0\)
Vậy giá trị của x là x=0
Giá trị x thỏa mãn
|x/2015 + x/2016 | = | x/2016 + x/2017|
\(\left|\frac{x}{2015}+\frac{x}{2016}\right|=\left|\frac{x}{2016}+\frac{x}{2017}\right|\)
<=>\(\left|x\right|.\left|\frac{1}{2015}+\frac{1}{2016}\right|=\left|x\right|.\left|\frac{1}{2016}+\frac{1}{2017}\right|\)
<=>\(\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}\right)=\left|x\right|.\left(\frac{1}{2016}+\frac{1}{2017}\right)\)
<=>\(\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left|x\right|.\left(\frac{1}{2016}+\frac{1}{2017}\right)=0\)
<=>\(\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
<=>\(\left|x\right|.\left(\frac{1}{2015}-\frac{1}{2017}\right)=0\)
Vì \(\frac{1}{2015}-\frac{1}{2017}\ne0\Rightarrow\left|x\right|=0\Rightarrow x=0\)
Vậy x=0
\(\left|\frac{x}{2015}+\frac{x}{2016}\right|=\left|\frac{x}{2016}+\frac{x}{2017}\right|\)
\(\Rightarrow\left|x.\left(\frac{1}{2015}+\frac{1}{2016}\right)\right|=\left|x.\left(\frac{1}{2016}+\frac{1}{2017}\right)\right|\)
\(\Rightarrow\left|x\right|.\left|\frac{1}{2015}+\frac{1}{2016}\right|=\left|x\right|.\left|\frac{1}{2016}+\frac{1}{2017}\right|\)
\(\Rightarrow\left|x\right|.\left(\frac{1}{2015}+\frac{1}{2016}\right)=\left|x\right|.\left(\frac{1}{2016}+\frac{1}{2017}\right)\)
Mà \(\frac{1}{2015}+\frac{1}{2016}>\frac{1}{2016}+\frac{1}{2017}\)
=> |x| = 0
=> x = 0
Vậy x = 0
giá trị của x thỏa mãn
x/2015 + x/2016 + x/2017 = x/2018
TÌM x
\(\frac{x}{2015}+\frac{x}{2016}+\frac{x}{2017}-\frac{x}{2018}\)\(=0\)=> \(x\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}\right)=0\)
Dễ thấy biếu thức trong ngoặc khác 0 nên \(x=0\).
Tập hợp các giá trị nguyên x thỏa mãn : | x + 2015 | + 2016 = 2017 là
| x + 2015 | + 2016 = 2017
| x + 2015 | = 2017 - 2016 = 1
x + 2015 = 1 hoặc x + 2015 = -1
x = 1 - 2015 hoặc x = -1 - 2015
x = -2014 hoặc x = - 2016
Giá trị của x thỏa mãn: (Do công thức bị lỗi, các bn thông cảm!!!)
\(|^x_{2015}+\frac{x}{2016}=|^x_{2016}+\frac{x}{2017}\)
\(\frac{x}{2015}+\frac{x}{2016}=\frac{x}{2016}+\frac{x}{2017}\)
=>\(\frac{x}{2015}=\frac{x}{2017}\)
Vì 2015 khác 2017. Nên x=0
tập hợp các giá trị nguyên thỏa mãn/x+2015/+2016=2017
|x+2015|+2016=2017
|x+2015|=2017-2016
|x+2015|=1
|x+2015|=+1
=>x+2015=1=>x=-2014
=>x+2015=-1=>x=-2016
Vay .....................
k mik nha ban
ta co:/x+2015/=2017-2016=1
{x+2015=1;x=-2014
x+2015=-1;x=-2016
theo đề bài: /x+2015/+2016=2017 (đkxđ: x c Z)
=> /x+2015/=2017-2016=1
=> x+2015=1 hoặc x+2015=-1
giải hai bài toán ta được tập hợp xc { -2014; -2016}
Tìm x thỏa mãn | x/2015 + x/2016| = | x/2016 + x/2017 |
Mấy bn giải giúp mh Thanks nhiều!
Tìm các số nguyên x và y thỏa mãn: x^2015+x^2016+2015^2016=y^2016+y^2017+2016^2017
Tìm giá trị của x thỏa mãn x/2 + x/4 + x/2016 = x/3 + x/5 + x/2017