Cho đường tròn (O;R) cố định và đường thằng d không đi qua O cắt (O;R) tại a và b. Từ điểm M bất kì trên d và ở ngoài đường tròn vẽ hai tiếp tuyến MN;MP (N và P là hai tiếp điểm)
1) Chứng minh MNOP nội tiếp.Gọi O' là tâm đường tròn này, xác định vị trí
2) Đường tròn (O') ngoại tiếp tứ giác MNOP cắt d tại I.Chứng minh IA=IB
3) Từ N kẻ đường kính ND của (O) và đường kính NC của (O'). Cm tích DP.DC không đổi
4) Xác định vtrí của M trên d sao cho MNOP là hình vuông.
Giúp mình câu 3 và 4 với nhé!