Cho đường tròn (O;R) cố định và đường thằng d không đi qua O cắt (O;R) tại a và b. Từ điểm M bất kì trên d và ở ngoài đường tròn vẽ hai tiếp tuyến MN;MP (N và P là hai tiếp điểm)
1) Chứng minh MNOP nội tiếp.Gọi O' là tâm đường tròn này, xác định vị trí
2) Đường tròn (O') ngoại tiếp tứ giác MNOP cắt d tại I.Chứng minh IA=IB
3) Từ N kẻ đường kính ND của (O) và đường kính NC của (O'). Cm tích DP.DC không đổi
4) Xác định vtrí của M trên d sao cho MNOP là hình vuông.
Giúp mình câu 3 và 4 với nhé!
1) Xét tứ giác MNOP có
\(\widehat{ONM}\) và \(\widehat{OPM}\) là hai góc đối
\(\widehat{ONM}+\widehat{OPM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: MNOP là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tâm của đường tròn ngoại tiếp tứ giác MNOP là trung điểm của OM
hay O' là trung điểm của OM