Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Zek Tim
Xem chi tiết
Hoàng Văn Dũng
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết

B =\(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)    + \(\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)\(\frac{\sqrt{x}+3}{\sqrt{x}-2}\)\(x\ge0\)\(x\ne2;3\))

   = \(\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b, B = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=  \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)\(1+\frac{4}{\sqrt{x}-3}\)

để B có gtri nguyên thì \(\frac{4}{\sqrt{x}-3}\)phải nguyên

\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilonƯ\left(4\right)\)

\(\Rightarrow\left(\sqrt{x}-3\right)\varepsilon\left\{1;-1;2;-2;4;-4\right\}\)

ta có bảng sau

\(\sqrt{x}-3\)                    1            -1           2            -2           4            -4

\(\sqrt{x}\)                            4                 2         5           1          7            -1 (L)

x                                     16                    4      25        1           49

vậy x \(\varepsilon\){ 16 ; 4 ; 25; 1 ; 49 }

#mã mã#

Trần Ngọc An Như
Xem chi tiết
Trần Việt Linh
19 tháng 10 2016 lúc 19:03

\(B=\frac{5}{\sqrt{x}-1}\)

Để B nguyên thì: \(\sqrt{x}-1\inƯ\left(5\right)\)

Mà: Ư(5)={-1;1;-5;-5}

=> \(\sqrt{x}-1\in\left\{1;-1;5-;5\right\}\)

Ta có bảng sau:

\(\sqrt{x}-1\)1-15-5
x4036loại

Vậy x={0;4;16}

 

Sorano Yuuki
Xem chi tiết
Kurosaki Akatsu
31 tháng 5 2017 lúc 9:00

Để B có giá trị nguyên

=> 5 chia hết cho \(\sqrt{x}-1\)

=> \(\sqrt{x}-1\) thuộc Ư(5) = {1 ; -1 ; 5 ; -5}

Ta có bảng sau :

\(\sqrt{x}-1\)1                     -1                          5                         -5                       
x4036 không có giá trị
uzumaki naruto
31 tháng 5 2017 lúc 9:03

Để B thuộc Z=> 5/ căn x - 1 thuộc Z => 5 : hết cho căn x -1

=> căn x-1 thuộc Ư(5) => căn x - 1 thuộc { -5;-1;1;5}

=> căn x thuộc{ -4; 0; 2; 5}

=> x thuộc{16; 0; 4; 25}

Trà My
31 tháng 5 2017 lúc 9:07

B nguyên khi \(5⋮\left(\sqrt{x}-1\right)\Leftrightarrow\sqrt{x}-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{-4;0;2;6\right\}\) mà \(\sqrt{x}\ge0\Rightarrow\sqrt{x}\in\left\{0;2;6\right\}\Rightarrow x\in\left\{0;4;36\right\}\)

Phạm Thị Vân Anh
Xem chi tiết
Trần Việt Linh
25 tháng 10 2016 lúc 16:58

Để A nguyên thì \(\sqrt{x}-1\inƯ\left(5\right)\)

Mà Ư(5)={1;-1;5;-5}

=> \(\sqrt{x}-1\in\left\{1;-1;5;-5\right\}\)

Ta có bảng sau:

\(\sqrt{x}-1\)1-15-5
\(\sqrt{x}\)206-4
x4036loại

Vậy \(x\in\left\{0;4;36\right\}\)

 

Nguyễn Thị Quỳnh
Xem chi tiết
Trần Tuyết Như
8 tháng 8 2015 lúc 22:33

Để B có giá trị nguyên thì \(\sqrt{x}-1\) phải là ước của 5:

=> \(\sqrt{x}-1=1\Rightarrow\sqrt{x}=1+1=2\Rightarrow x=4\)

=> \(\sqrt{x}-1=-1\Rightarrow\sqrt{x}=-1+1=0\Rightarrow x=0\)

=> \(\sqrt{x}-1=5\Rightarrow\sqrt{x}=5+1=6\Rightarrow x=36\)

=> \(\sqrt{x}-1=-5\Rightarrow\sqrt{x}=-5+1=-4\) => x ko tồn tại

Vậy có các giá trị x thoả mãn là: x = 4; x = 0; x = 36

Chibi
Xem chi tiết

B nguyên

(=) căn x-1 thuộc ước 5 = { -5 ; -1 ; 1 ; 5 }

=> x-1 thuộc { 1 ; 25 }( vì (-1)2 = 1 ; (-5)2 =25 )

=> x thuộc { 0 , 24 }

có j sai sai chủ thớt hơi , lp 7 đã học căn thức đâu

học tốt

quên 2 và 26 nha

mik lm hơi ẩu tí

sorry

học tốt

Nguyen Thao
Xem chi tiết
Kiệt Nguyễn
2 tháng 7 2019 lúc 6:15

a)\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)

 \(A=-1\Leftrightarrow1-\frac{8}{\sqrt{x}+3}=-1\)

\(\Leftrightarrow\frac{8}{\sqrt{x}+3}=2\)

\(\Leftrightarrow\sqrt{x}+3=4\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

Vậy A = -1 \(\Leftrightarrow x=1\)

Kiệt Nguyễn
2 tháng 7 2019 lúc 6:19

b) \(A=1-\frac{8}{\sqrt{x}+3}\)

\(A\inℤ\Leftrightarrow\frac{8}{\sqrt{x}+3}\inℤ\)hay \(8⋮\left(\sqrt{x}+3\right)\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm3;\pm4\right\}\)

Mà \(\sqrt{x}+3\ge3\)nên\(\Leftrightarrow\left(\sqrt{x}+3\right)\in\left\{3;4\right\}\)

\(TH1:\sqrt{x}+3=3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

\(TH2:\sqrt{x}+3=4\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

Vậy \(x\in\left\{0;1\right\}\)thì A nguyên

Đinh Hoàng Long
28 tháng 5 2020 lúc 19:58

a) Ta có: A=-1

=> \(\frac{\sqrt{x}-5}{\sqrt{x}+3}\)=-1

<=>\(\sqrt{x}-5=-\left(\sqrt{x}+3\right)\)

<=> \(2\sqrt{x}=2\)

<=> \(\sqrt{x}=1\)

<=> \(x=1\)

b) \(\frac{\sqrt{x}-5}{\sqrt{x}+3}=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}\)

=> \(\frac{\sqrt{x}-5}{\sqrt{x}+3}=1-\frac{8}{\sqrt{x}+3}\)

A nhận giá trị nguyên khi \(\frac{8}{\sqrt{x}+3}\)là số nguyên, hay \(\sqrt{x}+3\)là ước số của 8. Dễ dàng tính được x=1, x=25

Khách vãng lai đã xóa