Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nhung Nguyễn
Xem chi tiết
Phạm Nhật
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết
Phạm Thị Thùy Linh
23 tháng 7 2019 lúc 20:05

\(a,\)\(T=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{\sqrt{x}^3-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\)\(\frac{\sqrt{x}^3+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)

\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)

\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

Vũ Thị Tâm
Xem chi tiết
Lê Chí Công
6 tháng 9 2017 lúc 20:33

M=(\(\frac{\sqrt{x}}{\sqrt{x}+1}\)-1): \(\frac{-1}{x+\sqrt{x}+1}\)

M=\(\frac{-1}{\sqrt{x}+1}\).  -(x+\(\sqrt{x}\)+1)

M=\(\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

b, x=1 

M = \(\frac{3}{2}\)

c, M= 0 

=> x +\(\sqrt{x}\)+1= 0

mặt khác x+\(\sqrt{x}\)+1 = (\(\sqrt{x}\)+0,5)2+0,75 >0

=> x vô nghiệm........

nguyễn hà quyên
Xem chi tiết
Trà My
1 tháng 10 2017 lúc 11:00

\(A=\left(\frac{1}{\sqrt{x}-1}+\frac{1}{x-\sqrt{x}}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)

\(=\left[\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}< 1\)

Nguyễn Xuân Mai
Xem chi tiết
trungkien
Xem chi tiết
phan nữ kiều trang
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 8 2020 lúc 21:08

a) Ta có: \(M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\sqrt{x}-1}\right)\)

\(=\left(\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}-1+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}\)

b) Để M>0 thì \(\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}>0\)

\(\forall\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\), ta luôn có: \(\sqrt{x}\left(3\sqrt{x}+1\right)>0\)

nên \(\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)>0\)

\(\left(\sqrt{x}+1\right)^2>0\forall0< x\ne1\)

nên \(\sqrt{x}-1>0\)

\(\Leftrightarrow\sqrt{x}>1\)

hay x>1(nhận)

Vậy: để M>0 thì x>1