Cho \(M=\frac{\sqrt{x}-2}{\sqrt{x}}\left(x>0\right)\)
So sánh M với 1
\(Q=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x}^3-\sqrt{y}^3}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}\)
1) rút gọn M
2) chứng minh Q\(\ge\)0
3) so sánh Q với \(\sqrt{Q}\)
Mọi người giúp mình với ạ.
Cho:
\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+1}\) và
\(B=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\right)\cdot\left(\frac{\sqrt{x}-2}{3}+1\right)\)
Gọi M=A.B. so sánh \(M\)và\(\sqrt{M}\)
\(T=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0\right)\)
a) Rút gọn M
b) Tìm x để \(T=\frac{9}{2}\)
c) So sánh T với 4
ai giúp mk ikk
\(a,\)\(T=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\sqrt{x}^3-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\)\(\frac{\sqrt{x}^3+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
M=\(\left[\frac{x+2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}-1\right]:\frac{1-\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
a) Rút gọn M
b) Tính giá trị của A với x=1
c) Tìm x để M=0
M=(\(\frac{\sqrt{x}}{\sqrt{x}+1}\)-1): \(\frac{-1}{x+\sqrt{x}+1}\)
M=\(\frac{-1}{\sqrt{x}+1}\). -(x+\(\sqrt{x}\)+1)
M=\(\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
b, x=1
M = \(\frac{3}{2}\)
c, M= 0
=> x +\(\sqrt{x}\)+1= 0
mặt khác x+\(\sqrt{x}\)+1 = (\(\sqrt{x}\)+0,5)2+0,75 >0
=> x vô nghiệm........
Rút gọn A rồi so sánh với 1
A=\(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{x-\sqrt{x}}\right)\div\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)\(\left(x>0,x\ne1\right)\)
\(A=\left(\frac{1}{\sqrt{x}-1}+\frac{1}{x-\sqrt{x}}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\left[\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}< 1\)
Cho A =\(\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{1}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x-4}\right)\)với x > 0 , x \(\ne\)4
a, Rút gọn A
b, So sánh A với \(\frac{1}{A}\)
\(A:\frac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}\)(Rút Gọn)
B:\(M=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x-1}}\right):\frac{\sqrt{x+1}}{x-2\sqrt{x+1}}\)(rút gọn rồi so sánh giá trị M với 1)
\(1,Q=\left(x+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(3-\frac{x+\sqrt{x}-2}{\sqrt{x}-1}\right)\)
a,chứng minh Q=\(\sqrt{x}\left(x-1\right)\)
b,tìm x để Q=x
2,so sánh 1 với M=\(\frac{4\sqrt{x}}{x+4}\)
Cho biểu thức \(M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\sqrt{x}-1}\right)\) (với \(x>0,x\ne1\) )
a) Rút gọn biểu thức M
b) Tìm các giá trị của x để M > 0
a) Ta có: \(M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{\sqrt{x}-1}\right)\)
\(=\left(\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}-1+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}-1+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}\)
b) Để M>0 thì \(\frac{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}\left(3\sqrt{x}+1\right)}>0\)
mà \(\forall\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\), ta luôn có: \(\sqrt{x}\left(3\sqrt{x}+1\right)>0\)
nên \(\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)>0\)
mà \(\left(\sqrt{x}+1\right)^2>0\forall0< x\ne1\)
nên \(\sqrt{x}-1>0\)
\(\Leftrightarrow\sqrt{x}>1\)
hay x>1(nhận)
Vậy: để M>0 thì x>1