Theo đề bài ta có x > 0 nên \(\sqrt{x}>0\)
=> \(\frac{2}{\sqrt{x}}>0\Rightarrow-\frac{2}{\sqrt{x}}< 0\Rightarrow1-\frac{2}{\sqrt{x}}< 1\)
Ta có
M = \(\frac{\sqrt{x}-2}{\sqrt{x}}=\:1-\frac{2}{\sqrt{x}}< 1\)
Theo đề bài ta có x > 0 nên \(\sqrt{x}>0\)
=> \(\frac{2}{\sqrt{x}}>0\Rightarrow-\frac{2}{\sqrt{x}}< 0\Rightarrow1-\frac{2}{\sqrt{x}}< 1\)
Ta có
M = \(\frac{\sqrt{x}-2}{\sqrt{x}}=\:1-\frac{2}{\sqrt{x}}< 1\)
\(Q=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x}^3-\sqrt{y}^3}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}\)
1) rút gọn M
2) chứng minh Q\(\ge\)0
3) so sánh Q với \(\sqrt{Q}\)
Mọi người giúp mình với ạ.
Cho:
\(A=\frac{2-5\sqrt{x}}{\sqrt{x}+1}\) và
\(B=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\right)\cdot\left(\frac{\sqrt{x}-2}{3}+1\right)\)
Gọi M=A.B. so sánh \(M\)và\(\sqrt{M}\)
\(T=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0\right)\)
a) Rút gọn M
b) Tìm x để \(T=\frac{9}{2}\)
c) So sánh T với 4
ai giúp mk ikk
M=\(\left[\frac{x+2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}-1\right]:\frac{1-\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
a) Rút gọn M
b) Tính giá trị của A với x=1
c) Tìm x để M=0
Rút gọn A rồi so sánh với 1
A=\(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{x-\sqrt{x}}\right)\div\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)\(\left(x>0,x\ne1\right)\)
Cho A =\(\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{1}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x-4}\right)\)với x > 0 , x \(\ne\)4
a, Rút gọn A
b, So sánh A với \(\frac{1}{A}\)
\(A:\frac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}\)(Rút Gọn)
B:\(M=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x-1}}\right):\frac{\sqrt{x+1}}{x-2\sqrt{x+1}}\)(rút gọn rồi so sánh giá trị M với 1)
\(1,Q=\left(x+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(3-\frac{x+\sqrt{x}-2}{\sqrt{x}-1}\right)\)
a,chứng minh Q=\(\sqrt{x}\left(x-1\right)\)
b,tìm x để Q=x
2,so sánh 1 với M=\(\frac{4\sqrt{x}}{x+4}\)
Bài 1. (2,0 điểm)
a) Cho biểu thức: \(A = \left( {\frac{{2\sqrt x + 1}}{{x + 2\sqrt x + 1}} + \frac{{1 - 2\sqrt x }}{{x - 1}}} \right).\left( {1 + \frac{1}{{\sqrt x }}} \right)\) với x>0;x≠1. Rút gọn biểu thức A và tìm các giá trị nguyên của x để A là số nguyên.
b) Cho biểu thức:
\(M = \left( {\sqrt x + \sqrt {x + 1} + \sqrt {x + 2} } \right)\left( {\sqrt x + \sqrt {x + 1} - \sqrt {x + 2} } \right)\left( {\sqrt x - \sqrt {x + 1} + \sqrt {x + 2} } \right)\left( { - \sqrt x + \sqrt {x + 1} + \sqrt {x + 2} } \right)\)
Với x là số tự nhiên khác 0. Chứng minh M cũng là số tự nhiên.