Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cong chua lo lem
Xem chi tiết
Garlic Trunks
Xem chi tiết
Garlic Trunks
Xem chi tiết
Vkook
Xem chi tiết
le syn dùog
Xem chi tiết
Đặng Phương Thảo
15 tháng 7 2015 lúc 7:12

a) Áp dụng t/ của dãy tỉ số = nhau, ta có: 

x/5=y/3=z/4=x-z/5-4=7/1=7

Khi đó x/5=7=>x=35

          y/3=7=>y=21

          z/4=7=>z=28

Vậy _________

b) Mình sửa lại đề cho bạn nhé, bạn bị sai 1 chỗ: tim x,y thuộc z biết x/3=y/4=z/5 và 2x+3y+5z=86

Ta có: x/3=y/4=z/5 <=>2x/6=3y/12=5z/25

Áp dụng t/c của dãy tỉ số = nhau, ta có:

x/3=y/4=z/5=2x/6=3y/12=5z/25= (2x+3y+5z)/6+12+25= 86/43=2

Khi đó: x/3=2=>x=6

           y/4=2=>y=8

           z/5=2=>z= 10

Vậy _________

Nguyen Quoc Duy
Xem chi tiết
Thanh Tùng DZ
22 tháng 1 2017 lúc 14:15

x + 5 chia hết cho x - 2

=> x + 5 = x - 2 + 7

ta có : x - 2 chia hết cho x - 2 nên để x + 5 chia hết cho x - 2 thì 7 phải chia hết cho x - 2

=> x - 2 \(\in\)Ư ( 7 ) =  { 1 ; 7 ; -1 ; -7 }

Lập bảng ta có :    

x - 217-1-7
x3915

Vậy x = { 3 ; 9 ; 1 ; 5 }

๖ۣۜQuang ๖ۣۜFA.
Xem chi tiết
❊ Linh ♁ Cute ღ
16 tháng 7 2018 lúc 14:50

5xy+5x+y=5

5xy-5x-5+y=0

5(xy-x-1)+y=0

=>5(xy-x-1)=0 và y=0

=>xy-x-1=0 và y =0

thay y=0 vào xy-x-1=0

ta có: x.0-x-1=0 =>x=-1

vậy x=-1,y=0

hình như sai,ta cx ko rõ,nếu sai thì xin lỗi nhóe 

nguyen hoang gia phong
Xem chi tiết
Trần Việt Anh
20 tháng 1 2017 lúc 13:14

a)=>x-1;x-3 \(\in\)Ư(-5)={-1;-5;1;5}

còn lại thử từng TH nhé

b)\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)

c)=>x2-4;x2-19 trái dấu

Ta có:x^2-4-(x^2-19)=x^2-4-x^2+19=15 >0

\(\Rightarrow\orbr{\begin{cases}x^2-4>0\\x^2-19< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x^2>4\\x^2< 19\end{cases}}\)

Ta có:4<x^2<19

=>x^2\(\in\){9;16}

=>x\(\in\){3;4}

Nguyễn Bình Minh
Xem chi tiết
HT.Phong (9A5)
14 tháng 11 2023 lúc 5:41

\(\left(x-1\right)^2=\left(x-3\right)^4\)

\(\Leftrightarrow\left(x-1\right)^2-\left(x-3\right)^4=0\)

\(\Leftrightarrow\left(x-1\right)^2-\left[\left(x-3\right)^2\right]^2=0\)

\(\Leftrightarrow\left[\left(x-1\right)-\left(x-3\right)^2\right]\left[\left(x-1\right)+\left(x-3\right)^2\right]=0\)

\(\Leftrightarrow\left(x-1-x^2+6x-9\right)\left(x-1+x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(-x^2+7x-10\right)\left(x^2-5x+8\right)=0\)

\(\Leftrightarrow-\left(x-5\right)\left(x-2\right)\left(x^2-5x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)

Vậy: ... 

qưdqewfefdsđf
14 tháng 11 2023 lúc 5:50

(x-1)^2 =(x-3)^4=\(\left\{{}\begin{matrix}1+1\\2+2\\3+3\\4+4\end{matrix}\right.=2+4+6+8=\sqrt[]{251234=\Sigma\dfrac{2}{2}22\dfrac{2}{2}}\max\limits_{212}=\dfrac{21}{23}2123=\sum\limits1^{ }_{ }\text{(x-1)^2 =x=}\sum1\)

Bổ sung cho @ Huỳnh Thanh Phong.

(- \(x^2\) + 7\(x\)  - 10).(\(x^2\) - 5\(x\) + 8) = 0

(- \(x^2\) + 5\(x\) + 2\(x\) - 10).(\(x^2\) - \(\dfrac{5}{2}\)\(x\) - \(\dfrac{5}{2}\)\(x\) + \(\dfrac{25}{4}\) + \(\dfrac{7}{4}\)) = 0

[(- \(x^2\) + 5\(x\)) + (2\(x\) - 10)].[(\(x^2\) - \(\dfrac{5}{2}\)\(x\)) - (\(\dfrac{5}{2}\)\(x\) - \(\dfrac{25}{4}\)) + \(\dfrac{7}{4}\)] = 0

[ -\(x\)(\(x\) - 5) + 2.(\(x\) - 5)]. [\(x\)(\(x\) - \(\dfrac{5}{2}\)) - \(\dfrac{5}{2}\).(\(x\) - \(\dfrac{5}{2}\)) + \(\dfrac{7}{4}\)] = 0

(\(x\) - 5).(-\(x\) + 2).[(\(x-\dfrac{5}{2}\)).(\(x\) - \(\dfrac{5}{2}\)) + \(\dfrac{7}{4}\)] = 0

(\(x\) - 5).(-\(x\) + 2).[(\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{7}{4}\)] = 0 (1)

Vì (\(x\) - \(\dfrac{5}{2}\))2 ≥ 0 ⇒ (\(x\) - \(\dfrac{5}{2}\))2 + \(\dfrac{7}{4}\) ≥ \(\dfrac{7}{4}\)  (2)

Kết hợp (1) và (2) ta có:

\(\left[{}\begin{matrix}x-5=0\\-x+2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)

Vậy \(x\in\) {2; 5}