\(\frac{x}{7}\)=\(\frac{7y}{7}\)=\(\frac{5z}{9}\) và 2x+y-10z=6
tìm các số x,y,z biết rằng
a. \(\frac{x-2}{x-2}\)= \(\frac{x+4}{x+7}\)
b. 4x= 3y; 7y=5z và 2x-3y+z= 6
c. \(\frac{10}{x-5}\)=\(\frac{6}{y-9}\)= \(\frac{14}{z-21}\)và xyz=6720
a) ta có : \(\frac{x-2}{x-2}=1\Rightarrow1=\frac{x+4}{x+7}\)\(\Rightarrow x+4=x+7\Rightarrow x\in\varnothing\)
b)\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{1}{5}.\frac{x}{3}=\frac{1}{5}.\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{1}{4}.\frac{y}{5}=\frac{1}{4}.\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2}{2}.\frac{x}{15}=\frac{3}{3}.\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
áp dụng t/c day t/s = nhau
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x-3y+z}{30-60+28}=\frac{6}{-2}=-3\)
\(\frac{x}{15}=-3\Rightarrow x=-45\)
\(\frac{y}{20}=-3\Rightarrow y=-60\)
\(\frac{z}{28}=-3\Rightarrow z=-84\)
c)đặt k rồi giải típ ik mik lười quá
1) Tìm x, biết:
a) x:2=y:5 và x+y=21
b) \(\frac{x}{2}=\frac{y}{2}\)và x.y=54
c) x:7=y:5 và y-x=12
2) Tím các số x, y, z, biết:
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
b) \(\frac{x}{3}=\frac{y}{4}\); \(\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=124
c) 3x=2y; 7y=5z và x-y+z=32
d) 2x=3x=5z và x+y-z=95
a) x/5=y/2
= x+y/5+2=21/7=3
=> x/5=3=>x=15
y/2=3=>x=6
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
Tìm x,y,z biết:
a, \(\frac{x}{4}\)=\(\frac{y}{5}\)=\(\frac{z}{6}\)và 3x + 2x - z = 32
b, 2x = 3y ; 5z = 7z và 3,5 - 7y + 5z= 30
c \(\frac{x}{3}\)=\(\frac{y}{7}\)=\(\frac{z}{5}\)và x2 - y2 +z2= -60
d, x: y = 4:5 và x . y = 180
Mình chỉ bt làm câu d)
Cách 1:
\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x\times\frac{x}{4}=y\times\frac{y}{5}\)
\(\Rightarrow\frac{x^2}{4}=\frac{xy}{5}\Rightarrow\frac{x^2}{4}=\frac{180}{5}=36\)
\(\Rightarrow x^2=36\times4=144=\orbr{\begin{cases}\left(+12\right)^2\\\left(-12\right)^2\end{cases}\Rightarrow x=\orbr{\begin{cases}12\\-12\end{cases}}}\)
Với x = 12 thì y = 180 : 12 = 15
Với x = -12 thì y = 180 : (-12) = -15
* Cách 2:
\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x=\frac{4}{5}y\)
Ta có:
\(xy=180\Rightarrow\frac{4}{5}y\times x=180\times\frac{4}{5}=144\)
Mà \(\frac{4}{5}y=x\Rightarrow x^2=144\Rightarrow...\) làm tương tự câu a
cảm ơn bạn
bạn làm được câu này không
cho tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\).Chứng minh (a+2c).(b+d)=(a+c).(b+2d)
Tìm x, y, z biết: \(\frac{40x-20y}{5}=\frac{10z-40x}{7}=\frac{20y-10z}{9};\)\(2x+3y+4z=48\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\)
\(\Rightarrow\frac{40x-20y}{5}=\frac{10z-40x}{7}=\frac{20y-10z}{9}=\frac{40x-20y+10z-40x+20y-10z}{5+7+9}=0\)
\(\Rightarrow40x=20y\left(1\right);\)
\(20y=10z\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow40x=20y=10z\)
\(\Rightarrow\hept{\begin{cases}40x=20y\\20y=10z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{40}\\\frac{y}{10}=\frac{z}{20}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{20}=\frac{y}{40}\\\frac{y}{40}=\frac{z}{80}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{40}=\frac{z}{80}\Rightarrow\frac{2x}{40}=\frac{3y}{120}=\frac{4z}{320}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{20}=\frac{y}{40}=\frac{z}{80}=\frac{2x}{40}=\frac{3y}{120}=\frac{4z}{320}=\frac{2x+3y+4z}{40+120+320}=\frac{48}{480}=\frac{1}{10}\)
\(\Rightarrow10x=20\Rightarrow x=2;\)
\(10y=40\Rightarrow y=4;\)
\(10z=80\Rightarrow z=8\)
Vậy x = 2 ; y = 4 ; z = 8
Bài 1 a):\(cho\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{x+y}\)tính giá trị của mỗi tỉ số trên
b)\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7};x+y+z=92\)
c) 2x = 3y ;5y = 7z và 3x - 7y + 5z =30
d) \(3x=2y;\frac{y}{2}=z\)và 2x + 3y - 2z =40
Bài 2 :\(\frac{\left(-0,25\right)^{-5}.9^4.\left(-2\right)^{-3}-2^{-2}.6^9}{2^9.3^6+6^6.40}\)
b) \(\frac{x}{2}\)= \(\frac{y}{3}\) ; \(\frac{y}{5}\)= \(\frac{z}{7}\)và x+y+z=92
\(\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\)và x+y+z=92
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)và x+y+z=92
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}\)=\(\frac{92}{46}=2\)
Suy ra \(\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=2\Rightarrow z=42\)
Vậy ...
câu dưới tương tự nha bn
hoặc bn vào các câu hỏi tương tự ấy có nhiều bài dạng như vầy lắm
Tìm x, y, z biết: \(\frac{40x-20y}{5}=\frac{10z-40x}{7}=\frac{20y-10z}{9};\)\(2x+3y+4z=48\)
Từ giả thiết \(\Rightarrow\frac{2.\left(40x-20y\right)}{5}=\frac{2.\left(10z-40x\right)}{7}=\frac{2.\left(2y-10z\right)}{9}\)
\(\Leftrightarrow\frac{80x-40y}{5}=\frac{20z-80x}{7}=\frac{40y-20z}{9}\)
Tìm x,y,z,t biết
a,x:y:z:t=15:7:3:1 và x-y+z-t=10
b,\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}vàx+y-z=69\)
c,2x=3y,5y=7z và 3x+5z-7y
d,\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}và5z-3x-4y=50\)
Đề dài quá nên mình làm từ từ.
a) Từ giả thiết ta có \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)
Từ đó suy ra x =15; y =7;z=3;t=1
Đúng ko ta:3
b) \(\left\{{}\begin{matrix}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{matrix}\right.\Rightarrow\frac{x}{20}=\frac{y}{24}=\frac{z}{21}\). Trở về dạng câu a:)
c)\(\left\{{}\begin{matrix}2x=3y\\5y=7z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{3}=\frac{y}{2}\\\frac{y}{7}=\frac{z}{5}\end{matrix}\right.\). trở về dạng câu b:D
d) Đặt \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=k\Rightarrow x=2k+1;y=4k-3;z=6k+5\)
Từ đây thay vào giả thiết 5x - 3x - 4y = 50 sẽ tìm được..:D
tìm x ; y ; z biết
\(\frac{x}{19}=\frac{y}{21}\)và 2x -y = 34
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{24}\)và 5x + y - 2z = 28
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z =186
\(3x=2y;7y=5z\)và x - y + z = 32
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + x = 49
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và 2x + 3y - z = 50
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz = 810
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)và x2 + y2 + z2 = 14
\(2x=3y;5y=7z\)và 3x + 5z - 7y = 30
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5
=> x-1/2 = 5 => x-1=5 => x=6
y-2/3 = 5 => y-2 = 15 => y =17
z-3/4=5 => z-3=20 => z=23
Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k
Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3
=> x=2.3=6
y=3.3=9
z=5.3=15
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)
=> \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
=> \(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
=> x2/4 = 1/4 => x2 = 1 => x=\(\pm1\)
y2/16 = 1/4 => y2 = 4 => \(y=\pm2\)
z2/36 = 1/4 => z2 = 9 => \(z=\pm3\)
Tìm x,y,z biết : \(\frac{7y-8x}{10}\)= \(\frac{10x-7z}{8}\)= \(\frac{9z-10y}{7}\)và 2x - 3y + 5z = 1200