Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
caominhducne
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2021 lúc 13:28

a: Xét tứ giác AKMI có

\(\widehat{AKM}=\widehat{AIM}=\widehat{KAI}=90^0\)

Do đó: AKMI là hình chữ nhật

Kim Ngannnn
Xem chi tiết
Phùng khánh my
29 tháng 11 2023 lúc 12:38

a) Để chứng minh tam giác ABC vuông, ta cần chứng minh rằng tổng bình phương hai cạnh góc nhọn bằng bình phương cạnh huyền.

 

Áp dụng định lý Pythagoras, ta có:

AB^2 + AC^2 = 6^2 + 8^2 = 36 + 64 = 100

BC^2 = 10^2 = 100

 

Vậy AB^2 + AC^2 = BC^2, từ đó ta có thể kết luận rằng tam giác ABC là tam giác vuông tại góc A.

 

b) Ta có:

- H là chân đường cao từ A xuống BC, nên AH là đường cao của tam giác ABC.

- D là điểm đối xứng với H qua AB, nên AD = AH.

- M là giao điểm của AB và HD, nên AM là trung tuyến của tam giác AHD, do đó AM = MD.

- E là điểm đối xứng với H qua AC, nên AE = AH.

- N là giao điểm của AC và HE, nên AN là trung tuyến của tam giác AHE, do đó AN = NE.

 

Từ đó, ta có AH = AD = AE và AM = MD, AN = NE.

 

Vậy ta có thể kết luận rằng AH = MN.

 

c) Để chứng minh D đối xứng với E qua A, ta cần chứng minh rằng AD = AE và góc DAE = 180 độ.

 

Ta đã chứng minh trong phần b) rằng AD = AE.

 

Để chứng minh góc DAE = 180 độ, ta cần chứng minh rằng góc DAB + góc BAE = 180 độ.

 

Vì tam giác ABC là tam giác vuông tại A (chứng minh trong phần a)), nên góc DAB + góc BAE = 90 độ + 90 độ = 180 độ.

 

Từ đó, ta có thể kết luận rằng D đối xứng với E qua A.

 

Đồng thời, F là trung điểm BC, nên AF song song với HD (do D là điểm đối xứng với H qua AB) và AF song song với HE (do E là điểm đối xứng với H qua AC).

 

Vậy ta có thể kết luận rằng AF vuông góc với MN.

Nguyễn Huy Chương
Xem chi tiết
Khánh lynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2023 lúc 8:19

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

b: Xét tứ giác AEBC có

N là trung điểm chung của AB và EC

nên AEBC là hình bình hành

=>AE//BC và AE=BC

=>AD//AE và AD=AE
=>A là trung điểm của DE

Hoàng an
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2021 lúc 15:43

a: Xét tứ giác ABDC có 

I là trung điểm của AD

I là trung điểm của BC

Do đó: ABDC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABDC là hình chữ nhật

Hoàng Ninh
Xem chi tiết

Hình bạn tự vẽ

a) Theo định lí Pytago ta có \(BC^2=AB^2+AC^2=100\)

\(\Rightarrow BC=10\left(cm\right)\)

mà BD=DC=> AD=BD=DC\(=\frac{BC}{2}=5\left(cm\right)\)(t/c đường trung tuyến ứng với cạnh huyền)

Theo hệ thức lượng trong tam giác vuông ta có

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{36}+\frac{1}{64}=\frac{25}{576}\)

\(\Rightarrow AH=\frac{24}{5}\left(cm\right)\)

b, Xét tứ giác ABEC có hai đường chéo AE,BC cắt nhau tại trung điểm mỗi đường

=> tứ giác ABEC là hình bình hành

mà \(\widehat{BAC}=90^0\) => tứ giác ABEC là hình chữ nhật

Khách vãng lai đã xóa
Hoàng Ninh
9 tháng 3 2020 lúc 16:12

Mình cần câu c bạn ơi!!! 2 câu kia mình làm đc rùi

Khách vãng lai đã xóa
Tran Le Khanh Linh
9 tháng 3 2020 lúc 16:24

A B C E H D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A (gt)

\(\Rightarrow BC^2=AB^2+AC^2\)

Thay AB=6m, AC=8cm

=> \(BC^2=6^2+8^2=100\)cm

\(\Rightarrow BC=10cm\)

+) Vì D là trung điểm của BC => AD là đường trung tuyến của tam giác vuông ABC

\(\Rightarrow\frac{BC}{2}=AD\)mà BC=10cm (cmt)

\(\Rightarrow AD=5cm\)

+) Ta có diện tích tam giác ABC =\(\frac{1}{2}\cdot AB\cdot AC=\frac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

\(\frac{AH\cdot10}{2}=24\Rightarrow AH\cdot10=48\Rightarrow AH=4,8\left(cm\right)\)

Vậy BC=10cm, AD=5cm, AH=4,8cm

b) ABCE là hình chữ nhật vì:

Xét tứ giác ABCE có  A đối xứng E qua D

=> D là trung điểm của AE

Mà D là trung điểm BC (gt)

=> 2 đường thẳng AE và BC cắt nhau tại trung điểm mỗi đường

=> Tứ giác ABCE là hình bình hành

Xét hình bình hành ABCE có góc BAC=90\(^o\)(Tam giác ABC vuông tại A)
=> ABCE là hình chữ nhật (đpcm)

Khách vãng lai đã xóa
Lâm The Computer Guy
Xem chi tiết
Trần Nguyễn Việt Hoàng
Xem chi tiết
Bangtan Bàngtán Bất Bình...
17 tháng 12 2019 lúc 20:56

a)bn c/m hbh có  1 góc vuông là hcn

b) c/m EACH là hbh (EA//HC và EA=HC)

mà N là trung điểm AH nên N cx là trung điểm EC

c)ta có NM là đường trung bình tam giác BHA nên NM=HC/2(1)

mà BH=HC (AH là đc nên cx là đtt trong tam giác cân)

=> BH=BC/2(2)

từ (1) và (2)=>NM=BC/4=12/4=3cm

ta có NM vuông góc AH (NM//BC, AH vuông góc BC)

SAHM=1/2 x 8x3=12 cm2

d)ta có QC=QK,BH=HC

=>QH//BK

lại có KQ=QC,KI=IH

=>QI là đtb t.g KHC

=>QI//HC

mà HC vuoong góc HF

nên QI cx vuông góc HF

tam giác HQF có đường cao QI,HK cùng cắt tại I

nên I là trực tâm  

=>IF vuông góc HQ

mà HQ//BK 

=>IF vuông góc BK

Khách vãng lai đã xóa
H.Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2021 lúc 22:41

a: Xét tứ giác AECD có

O là trung điểm của AC

O là trung điểm của ED

Do đó: AECD là hình bình hành

mà \(\widehat{ADC}=90^0\)

nên AECD là hình chữ nhật

Như Quỳnh Võ
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 23:46

a: Xét tứ giác AKIH có 

\(\widehat{AKI}=\widehat{AHI}=\widehat{HAK}=90^0\)

Do đó: AKIH là hình chữ nhật