Tìm 3 số a,b,c biết :
\(\frac{b+c+1}{a}\)=\(\frac{a+c+2}{b}\)=\(\frac{a+b-3}{c}\)=\(\frac{1}{a+b+c}\)
Ai giải đúng và nhanh nhất sẽ được 3 tick
Tìm x,y biết
\(\frac{b+c-a}{a}\)= \(\frac{c+a-b}{b}=\frac{a+b-c}{c}\)
Ai giải đúng và nhanh nhất sẽ được 3 tick
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c}{c}=\frac{\left(b+c-a\right)+\left(c+a-b\right)+\left(a+b-c\right)}{a+b+c}\)
\(=\frac{a+b+c}{a+b+c}=1\)
Giúp mình nhé, ai đúng, nhanh, đầy đủ lời giải sẽ có thưởng :
Tìm các số a, b, c biết \(\frac{a}{-3}=\frac{b}{4};\frac{b}{2}=\frac{c}{3};a+b+c=14\)
\(\frac{a}{-3}=\frac{b}{4};\frac{b}{2}=\frac{c}{3}=>\frac{a}{-3}=\frac{b}{4}=\frac{2}{6}\)
áp dụng tính chất DTSBN ta có
\(\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{-3+4+6}=\frac{14}{7}=2\)
\(+\frac{a}{-3}=>a=-6\)
\(+\frac{b}{4}=2=>b=8\)
\(+\frac{c}{6}=2=>c=12\)
Ta có;\(\frac{a}{-3}=\frac{b}{4};\frac{b}{2}=\frac{c}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{6}\Rightarrow\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}\)
Áp dụng tính chất dãy tỉ số băng nhau:
\(\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{-3+4+6}=\frac{14}{7}=2\)
Vậy\(\hept{\begin{cases}a=2\cdot\left(-3\right)=-6\\b=2\cdot4=8\\c=2\cdot6=12\end{cases}}\)
suy ra a/-6=b/8,b/8=c/12
suy ra a/-6=b/8=c/12
áp dụng tính chất đẫy tỉ số băng nhau có
a/-6=b/8=c/12=a+b+c=14/-6+8+12=14/14=1
suy ra a/-6=1 suy ra a=-6
b/8=1 suy ra b=8
c/12 = 1 suy ra c=12
vậy a=-6,b=8,c=12
chúc bạn học tốt
tìm a,b,c thuộc N biết
a)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
b)\(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}=\frac{1}{3}\)
ai làm dúng và nhanh nhất mình sẽ tk cho
Cho a + b + c = 2017 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}=\frac{1}{2017}\)
Tính A = \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Mk rất gấp, các bn giúp mk vs!!! Mk sẽ tick cho ai trả lời nhanh và đúng nhất
Ta có :
\(A+3=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\)
\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
\(=2017.\frac{1}{2017}=1\)
\(\Rightarrow A=1-3=-2\)
Cho \(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}\) và a + b + c + d khác 0
Tính giá trị của P = \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)
Ai giải đúng và nhanh nhất sẽ được 5 tick vào ngày hôm nay và ngày mai
Phải sửa đề thành\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
Ta có :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\Rightarrow a=b=c=d\)
\(\Rightarrow P=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}=\frac{a}{2a}.4=2\)
mình nói hướng làm cho bạn thôi nhé
nếu bạn đặt \(\frac{a}{b}\)= \(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{a}\)=k vào thay vào rùi sẽ ra
1) Cho a, b, c ≠ 0 và a ≠b thỏa mãn a + b + c = 2 và (a2 - bc)(b - abc) = (b2 - ac)(a - abc). Tính S = \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
2) Cho a, b, c > 0. CMR: \(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\)
Làm được đến đâu thì làm nhé. Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\)
\(=\frac{a^4}{ab+ac}+\frac{b^4}{cb+ba}+\frac{c^4}{ac+bc}\)
\(\ge\frac{\left(a^2+b^2+c\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{2\left(ab+bc+ca\right)}\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrowđpcm\)
\(\frac{a^3}{b+c}+\frac{a^3}{b+c}+\frac{\left(b+c\right)^2}{8}\ge3\sqrt[3]{\frac{a^3}{b+c}.\frac{a^3}{b+c}.\frac{\left(b+c\right)^2}{8}}=\frac{3a^2}{2}\)
Rồi tương tự các kiểu:v
Suy ra \(2VT\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{8}\)
\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{a^2+b^2+c^2}{2}=\left(a^2+b^2+c^2\right)\) (chú ý \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\))
Không phải dùng tới Cauchy-Schwarz:D
mình chưa hiểu?
có thể giải thích rõ hơn đc ko
Câu 1:Cho\(a,b,c\in N\)* và\(\frac{a}{b}< 1\):
Chứng minh rằng\(\frac{a}{b}< \frac{a+c}{b+c}\)
Câu 2:Cho\(a,b,c,d\in\)N* thỏa mãn:\(\frac{a}{b}< \frac{c}{d}\)
Chứng minh rằng:\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Câu 3:Tìm phân số nhỏ nhất khác 0 sao cho khi ta nhân nó với\(\frac{15}{7}\)và\(\frac{35}{19}\)ta đều đươc thương là các số tự nhiên
Câu 4: Tìm phân số nhỏ nhất sao cho khi chia nó cho nó cho\(\frac{20}{19}\)và \(\frac{32}{21}\)ta đều đươc thương là các số tự nhiên
Câu 5:Tìm tập hợp các số nguyên n biết n-3 là bội của n2+4
Giải ra đầy đủ giúp mình với. Ai giải đúng, nhanh nhất mình sẽ tick đúng cho
Tìm các số tự nhiên a, b, c, d nhỏ nhất biết :
\(\frac{a}{b}=\frac{5}{3};\frac{b}{c}=\frac{12}{21};\frac{c}{d}=\frac{6}{11}\)
giúp tui với !! Ai nhanh + đúng nhất = tui tick cho nha
a)Chứng minh rằng : \(2^{2015}< 7^{730}\)
b)Tìm a,b,c,d thuộc N biết :
\(\frac{1}{a+\frac{1}{b+\frac{1}{c+\frac{1}{d}}}}\)
Ai nhanh và có lời giải mình tick 3 tick
Câu b là = 30/43 nhé, mình quên ko ghi kết quả