Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Văn Tài
Xem chi tiết
soyeon_Tiểu bàng giải
12 tháng 10 2016 lúc 16:45

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c}{c}=\frac{\left(b+c-a\right)+\left(c+a-b\right)+\left(a+b-c\right)}{a+b+c}\)

                                                                         \(=\frac{a+b+c}{a+b+c}=1\)

Xem chi tiết
Bùi Anh Tuấn
23 tháng 7 2019 lúc 16:24

\(\frac{a}{-3}=\frac{b}{4};\frac{b}{2}=\frac{c}{3}=>\frac{a}{-3}=\frac{b}{4}=\frac{2}{6}\)

áp dụng tính chất DTSBN ta có

\(\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{-3+4+6}=\frac{14}{7}=2\)

\(+\frac{a}{-3}=>a=-6\)

\(+\frac{b}{4}=2=>b=8\)

\(+\frac{c}{6}=2=>c=12\)

Ta có;\(\frac{a}{-3}=\frac{b}{4};\frac{b}{2}=\frac{c}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{6}\Rightarrow\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}\)

Áp dụng tính chất dãy tỉ số băng nhau:

 \(\frac{a}{-3}=\frac{b}{4}=\frac{c}{6}=\frac{a+b+c}{-3+4+6}=\frac{14}{7}=2\)

Vậy\(\hept{\begin{cases}a=2\cdot\left(-3\right)=-6\\b=2\cdot4=8\\c=2\cdot6=12\end{cases}}\)

Kudo Shinichi
23 tháng 7 2019 lúc 16:28

suy ra a/-6=b/8,b/8=c/12

suy ra a/-6=b/8=c/12 

áp dụng tính chất đẫy tỉ số băng nhau có 

a/-6=b/8=c/12=a+b+c=14/-6+8+12=14/14=1

suy ra a/-6=1 suy ra a=-6

b/8=1 suy ra b=8

c/12 = 1 suy ra c=12 

vậy a=-6,b=8,c=12

chúc bạn học tốt

Trần Trung Kiên
Xem chi tiết
༄NguyễnTrungNghĩa༄༂
27 tháng 7 2017 lúc 8:10

a) a = 2 , b = 3, c = 6

Không Tồn Tại
Xem chi tiết
Đinh Đức Hùng
9 tháng 8 2017 lúc 14:13

Ta có :

\(A+3=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\)

\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)\)

\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)

\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)

\(=2017.\frac{1}{2017}=1\)

\(\Rightarrow A=1-3=-2\)

Phạm Văn Tài
Xem chi tiết
Phan Thanh Tịnh
21 tháng 10 2016 lúc 12:46

Phải sửa đề thành\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)

Ta có :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\Rightarrow a=b=c=d\)

\(\Rightarrow P=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}=\frac{a}{2a}.4=2\)

Namikaze Minato
21 tháng 10 2016 lúc 9:37

mình nói hướng làm cho bạn thôi nhé

nếu bạn đặt \(\frac{a}{b}\)\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{a}\)=k vào thay vào rùi sẽ ra

đô hoàng hai
22 tháng 10 2016 lúc 17:53

bằng 2

Đỗ Xuân Tuấn Minh
Xem chi tiết
zZz Cool Kid_new zZz
17 tháng 11 2019 lúc 9:28

\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\)

\(=\frac{a^4}{ab+ac}+\frac{b^4}{cb+ba}+\frac{c^4}{ac+bc}\)

\(\ge\frac{\left(a^2+b^2+c\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{2\left(ab+bc+ca\right)}\)

Mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrowđpcm\)

Khách vãng lai đã xóa
tth_new
17 tháng 11 2019 lúc 10:57

\(\frac{a^3}{b+c}+\frac{a^3}{b+c}+\frac{\left(b+c\right)^2}{8}\ge3\sqrt[3]{\frac{a^3}{b+c}.\frac{a^3}{b+c}.\frac{\left(b+c\right)^2}{8}}=\frac{3a^2}{2}\)

Rồi tương tự các kiểu:v

Suy ra \(2VT\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{8}\)

\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{a^2+b^2+c^2}{2}=\left(a^2+b^2+c^2\right)\) (chú ý \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\))

Không phải dùng tới Cauchy-Schwarz:D

Khách vãng lai đã xóa
Đỗ Xuân Tuấn Minh
17 tháng 11 2019 lúc 11:12

mình chưa hiểu?

có thể giải thích rõ hơn đc ko

Khách vãng lai đã xóa
Nghiêm Đình Khoa
Xem chi tiết
Lê Thúy Hằng
Xem chi tiết
Minh nhật
16 tháng 8 2019 lúc 21:18

bạn vào câu hỏi tương tự ấy

Cure whip
Xem chi tiết
Cure whip
31 tháng 1 2019 lúc 14:47

Câu b là = 30/43 nhé, mình quên ko ghi kết quả