cmr nếu ab + cd chia hết cho 11 thì abcd chia hết cho 11
CMR nếu ab + cd chia hết cho 11 thì abcd chia hết cho 11
ta có:
abcd=100.ab+cd=99.ab+ab+cd=99.ab+(ab+cd)
mà 99.ab=11.9.ab chia hết cho 11
ab+cd chia hết cho 11(theo đề)
=>99.ab+(ab+cd) chia hết cho 11
=>abcd chia hết cho 11(đpcm)
CMR nếu ab +cd chia hết cho 11 thì abcd chia hết cho11 {ab;cd;abcd có gạch trên đầu}
Ta có
abcd = ab.100 + cd
= ab.99 + ab + cd
= ab.99 + (ab + cd)
Do ab.99= ab.9.11 chia hết cho 11 và theo bài ra ta có ab + cd chia hết cho 11
nên ab.99 + (ab + cd) chia hết cho 11
Vậy abcd chia hết cho 11
CMR: ab+cd chia hết cho 11 thì abcd chia hết cho 11
Ta có:
abcd = ab.100 +cd = ab.99 +ab +cd = ab.9.11 + ab +cd
Vì ab.9.11 chia hết cho 11 nên để abcd chia hết cho 11 thì ab + cd phải chia hết cho 11
Vậy nếu ab+ cd chia hết cho 11 thì abcd chia hết cho 11
CMR nếu ab chia hết cho 11 thì abcd chia hết cho 11
Không có đủ cơ sở để đưa ra kết luận này bạn nhé.
cmr : nếu ( ab + cd + eg ) chia hết cho 11 thì abcdeg cũng chia hết cho 11
Ta có: abcdeg=10000ab+100+cd+eg
=(ab+cd+eg)(10000+101)
theo bài ra ta có ab+cd+eg chia hết cho 11=>(ab+cd+eg)(10000+101) chia hết cho 11 hay abcdeg chia hết cho 11(đpcm)
Vậy với ab+cd+eg chia hết cho 11 thì abcdeg cũng chia hết cho 11
cho abc khác 0 CMR:
a) M=ab+ba chia hết cho 11
b)abc-cba chia hết cho 99
c)Nếu abcd chia hết cho 99 thì ab+cd chia hết cho 99
CMR nếu ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11.
abcdeg = 10000.ab + 100.cd + eg = 9999.ab + 99.cd + (ab + cd + eg)
Vì 9999.ab chia hết cho 11, 99.cd chia hết cho 11 và ab + cd + eg chia hết cho 11
=> abcdeg chia hết cho 11 (đpcm)
CMR : Nếu (ab + cd + eg) chia hết cho 11 thì abcdeg chia hết cho 11
ab+cd+eg chia hết cho 11
Mà 9999ab = 99.11.ab chia hết cho 11 và 99cd = 9.11.cd chia hết cho 11
=> 9999ab+99cd+ab+cd+eg chia hết cho 11
=> 10000ab+100cd+eg chia hết cho 11
=> ab0000+cd00+eg chia hết cho 11
=> abcdeg chia hết cho 11
=> ĐPCM
Tk mk nha
Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Mà \(999\overline{ab}⋮11;99\overline{cd}⋮11;\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)
\(\Rightarrow9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)
Vậy...
abcdeg=10000ab+100cd+eg=9999ab+99cd+(ab+cd+eg)
Mà ab + cd + eg chia hết cho 11
Suy ra abcdeg chia hết cho 11 khi ab + cd + eg chia hết cho 11 ( do 9999ab+99cd chia hết cho 11)
Tk mình đi!
Chứng minh nếu ab+ cd chia hết cho 11 thì abcd chia hết cho 11
ta co
abcd=100ab+cd=99ab+(ab+cd)
vì 99ab chia het cho11 nen neu ab+cd chia het cho 11 thi abcd chia het cho11
tu day ne
tra loi cho cau roi do nh
hinh như co thuong cung len online math do
co dang bai kho lam
bai do noi ve cong viec lam dong thoi
giải gì ngắn thế ? siêu nhân hay siêu nhanh đây hả trời (Thành đây nè)
ta có b = abcd = 100ab + cd
= (ab + cd ) + 99.ab
ab +cd + 11.9.ab
vi 11 . 9 . ab chia hết cho 11 => (ab + cd ) chia hết cho 11
=> abcd chia het cho 11